[1] Eggers J, Villermaux E. Physics of liquid jets[J]. Reports on Progress in Physics, 2008, 71(3):036601. DOI:10.1088/0034-4885/71/3/036601. [2] Sterling A M, Sleicher C A. The instability of capillary jets[J]. Journal of Fluid Mechanics, 1975, 68(3):477-495. DOI:10.1017/s0022112075001772. [3] Plateau J A F. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires[M/OL]. Gauthier-Villars, 1873:261-266[2022-03-28]. https://openlibrary.org/books/OL23535127M. [4] Rayleigh L. On the instability of jets[J]. Proceedings of the London Mathematical Society, 1878, (1):4-13. DOI:10.1112/plms/s1-10.1.4. [5] Rayleigh L. On the capillary phenomena of jets[J]. Proceedings of the Royal Society, 1879, 29(196):71-97. DOI:10.1098/rspl.1879.0015. [6] Weber C. Zum zerfall eines flüssigkeitsstrahles[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 1931, 11(2):136-154. DOI:10.1002/zamm.19310110207. [7] Ohnesorge W V. Die bildung von tropfen an düsen und Die auflösung flüssiger strahlen[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 1936, 16(6):355-358. DOI:10.1002/zamm.19360160611. [8] Lin S P, Reitz R D. Drop and spray formation from a liquid jet[J]. Annual Review of Fluid Mechanics, 1998, 30:85-105. DOI:10.1146/annurev.fluid.30.1.85. [9] Eroglu H, Chigier N, Farago Z. Coaxial atomizer liquid intact lengths[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(2):303-308. DOI:10.1063/1.858139. [10] SHIBATA K, KOSHIZUKA S, OKA Y. Numerical analysis of jet breakup behavior using particle method[J]. Journal of Nuclear Science and Technology, 2004, 41(7):715-722. DOI:10.1080/18811248.2004.9715538. [11] Xie L, Yang L J, Ye H Y. Instability of gas-surrounded Rayleigh viscous jets:Weakly nonlinear analysis and numerical simulation[J]. Physics of Fluids, 2017, 29(7):074101. DOI:10.1063/1.4991578. [12] Fenn R W I, Middleman S. Newtonian jet stability:the role of air resistance[J]. AIChE Journal, 1969, 15(3):379-383. DOI:10.1002/aic.690150315. [13] Etzold M, Deswal A, Chen L, et al. Break-up length of liquid jets produced by short nozzles[J]. International Journal of Multiphase Flow, 2018, 99:397-407. DOI:10.1016/j.ijmultiphaseflow.2017.11.006. [14] Spangler C A, Hilbing J H, Heister S D. Nonlinear modeling of jet atomization in the wind-induced regime[J]. Physics of Fluids, 1995, 7(5):964-971. DOI:10.1063/1.868572. [15] Hiroyasu H. Break-up length of a liquid jet and internal flow in a nozzle[C/OL]. Proc. 5th. ICLASS. 1991:275-282[2022-03-28]. https://www.researchgate.net/publication/284773688. [16] Ohgo T, Miyazawa J, Goto T, et al. Study on jets stabilized by inserting internal flow resistances for the liquid metal divertor in the helical fusion reactor[J]. Plasma and Fusion Research, 2018, 13:1405003. DOI:10.1585/pfr.13.1405003. [17] Oshima S, Yamane R, Mochimaru Y, et al. The shape of a liquid metal jet under a non-uniform magnetic field[J]. JSME International Journal, 1987, 30(261):437-448. DOI:10.1299/jsme1987.30.437. [18] 许增裕, 潘传杰, 康伟山, 等. 几种液体金属自由表面的MHD不稳定性实验研究[J]. 核聚变与等离子体物理, 2008, 28(4):289-292. DOI:10.16568/j.0254-6086.2008.04.006. [19] Kuteev B V, Sergeev V Y, Krylov S V, et al. Conceptual analysis of a tokamak reactor with lithium dust jet[J]. Nuclear Fusion, 2010, 50(7):075001. DOI:10.1088/0029-5515/50/7/075001. [20] Halfon S, Arenshtam A, Kijel D, et al. High-power liquid-lithium jet target for neutron production[J]. The Review of Scientific Instruments, 2013, 84(12):123507. DOI:10.1063/1.4847158. [21] Morley N B, Burris J, Cadwallader L C, et al. GaInSn usage in the research laboratory[J]. The Review of Scientific Instruments, 2008, 79(5):056107. DOI:10.1063/1.2930813. [22] Liu T Y, Sen P, Kim C J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices[J]. Journal of Microelectromechanical Systems, 2012, 21(2):443-450. DOI:10.1109/JMEMS.2011.2174421. [23] Trettel B. Reevaluating the jet breakup regime diagram[J]. Atomization and Sprays, 2020, 30(7):517-556. DOI:10.1615/atomizspr.2020033171. [24] Jung W H, Park H S, Moriyama K, et al. Analysis of experimental uncertainties in jet breakup length and jet diameter during molten fuel-coolant interaction[J]. Nuclear Engineering and Design, 2019, 344:183-194. DOI:10.1016/j.nucengdes.2019.01.018. [25] Shimizu M, Arai M, Hiroyasu H. Measurements of breakup length in high speed jet[J]. Bulletin of JSME, 1984, 27(230):1709-1715. DOI:10.1299/jsme1958.27.1709. [26] Rajendran S, Jog M A, Manglik R M. Experimental investigation of jet breakup at low weber number[J]. Atomization and Sprays, 2017, 27(9):821-834. DOI:10.1615/atomizspr.2017019424. [27] 于星星, 张杰, 倪明玖. 水平磁场中液态金属射流的三维数值研究[J]. 中国科学院大学学报, 2019, 36(4):481-486. DOI:10.7523/j.issn.2095-6134.2019.04.006. [28] Breslouer O. Rayleigh-Plateau Instability:Falling Jet[R/OL].(2010-08-01)[2022-03-28]. http://www.princeton.edu/~stonelab/Teaching/Oren%20Breslouer%20559%20Final%20Report.pdf. [29] Squire H B. Investigation of the instability of a moving liquid film[J]. British Journal of Applied Physics, 1953, 4(6):167-169. DOI:10.1088/0508-3443/4/6/302. [30] 李帅兵, 司廷. 射流破碎的线性不稳定性分析方法[J]. 空气动力学学报, 2019, 37(3):356-372. DOI:10.7638/kqdlxxb-2018.0153. [31] Omocea I L, Patrascu C, Turcanu M, et al. Breakup of liquid jets[J]. Energy Procedia, 2016, 85:383-389. DOI:10.1016/j.egypro.2015.12.265. [32] Yang J C, Qi T Y, Han T Y, et al. Elliptical spreading characteristics of a liquid metal droplet impact on a glass surface under a horizontal magnetic field[J]. Physics of Fluids, 2018, 30(1):012101. DOI:10.1063/1.5000054. |