[1] 金亚秋, 法文哲, 徐丰. 火星探测的微波遥感技术[J]. 空间科学学报, 2008,28(3): 264-272. [2] Picardi G, Plaut J J, Biccari D, et al.Radar soundings of the subsurface of Mars[J]. Science, 2005, 310(5756): 1925-1928. DOI:10.1126/science.1122165. [3] Orosei R, Lauro S E, Pettinelli E, et al.Radar evidence of subglacial liquid water on Mars[J]. Science, 2018, 361(6401): 490-493. DOI:10.1126/science.aar7268. [4] Watters T R, Leuschen C J, Plaut J J, et al.MARSIS radar sounder evidence of buried basins in the northern lowlands of Mars[J]. Nature, 2006, 444(7121): 905-908. DOI:10.1038/nature05356. [5] Boisson J, Heggy E, Clifford S M, et al.Sounding the subsurface of Athabasca Valles using MARSIS radar data: Exploring the volcanic and fluvial hypotheses for the origin of the rafted plate terrain[J]. Journal of Geophysical Research: Planets, 2009, 114(E8). DOI:10.1029/2008je003299. [6] Hamran S E, Paige D A, Allwood A, et al. Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars[J]. Science Advances, 2022, 8(34): eabp8564. DOI:10.1126/sciadv.abp8564. [7] Zhou B, Shen S X, Lu W, et al.The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission[J]. Earth and Planetary Physics, 2020, 4(4): 345-354. DOI:10.26464/epp2020054. [8] Wan W H, Yu T Y, Di K C, et al.Visual localization of the Tianwen-1 lander using orbital, descent and rover images[J]. Remote Sensing, 2021, 13(17): 3439. DOI:10.3390/rs13173439. [9] McGill G E. Buried topography of Utopia, Mars: Persistence of a giant impact depression[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B3): 2753-2759. DOI:10.1029/JB094iB03p02753. [10] Carr M H, Head J W.Geologic history of Mars[J]. Earth and Planetary Science Letters, 2010, 294(3-4): 185-203. DOI:10.1016/j.epsl.2009.06.042. [11] Tanaka K L, Skinner J A, Hare T M, et al.Resurfacing history of the northern plains of Mars based on geologic mapping of Mars global surveyor data[J]. Journal of Geophysical Research: Planets, 2003, 108(E4). DOI:10.1029/2002je001908. [12] Kreslavsky M A, Head J W. Fate of outflow channel effluents in the northern lowlands of Mars: The Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water[J]. Journal of Geophysical Research: Planets, 2002, 107(E12): 4-1-4-25. DOI:10.1029/2001je001831. [13] Salvatore M R, Christensen P R.On the origin of the Vastitas Borealis Formation in Chryse and Acidalia Planitiae, Mars[J]. Journal of Geophysical Research: Planets, 2014, 119(12): 2437-2456. DOI:10.1002/2014je004682. [14] Ye B L, Qian Y Q, Xiao L, et al.Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars[J]. Earth and Planetary Science Letters, 2021, 576: 117199. DOI:10.1016/j.epsl.2021.117199. [15] Wu X, Liu Y, Zhang C L, et al.Geological characteristics of China's Tianwen-1 landing site at Utopia Planitia, Mars[J]. Icarus, 2021, 370: 114657. DOI:10.1016/j.icarus.2021.114657. [16] Zhao J N, Xiao Z J, Huang J, et al.Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars[J]. Geophysical Research Letters, 2021, 48(20). DOI:10.1029/2021gl094903. [17] Liu J J, Li C L, Zhang R Q, et al.Geomorphic contexts and science focus of the Zhurong landing site on Mars[J]. Nature Astronomy, 2022, 6(1): 65-71. DOI:10.1038/s41550-021-01519-5. [18] Gou S, Yue Z Y, Di K C, et al.Transverse aeolian ridges in the landing area of the Tianwen-1 Zhurong rover on Utopia Planitia, Mars[J]. Earth and Planetary Science Letters, 2022, 595: 117764. DOI:10.1016/j.epsl.2022.117764. [19] Liu Y, Wu X, Zhao Y Y S, et al. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars[J]. Science Advances, 2022, 8(19): eabn8555. DOI:10.1126/sciadv.abn8555. [20] Li C, Zheng Y K, Wang X, et al.Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar[J]. Nature, 2022, 610(7931): 308-312. DOI:10.1038/s41586-022-05147-5. [21] Zhang L, Zeng Z F, Li J, et al.Simulation of the lunar regolith and lunar-penetrating radar data processing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 655-663. DOI:10.1109/JSTARS.2017.2786476. [22] Lv W M, Li C, Song H J, et al.Comparative analysis of reflection characteristics of lunar penetrating radar data using numerical simulations[J]. Icarus, 2020, 350: 113896. DOI:10.1016/j.icarus.2020.113896. [23] Wang Y, Feng X, Zhou H Q, et al.Water ice detection research in Utopia Planitia based on simulation of Mars rover full-polarimetric subsurface penetrating radar[J]. Remote Sensing, 2021, 13(14): 2685. DOI:10.3390/rs13142685. [24] Dong Z J, Feng X, Zhou H Q, et al.Assessing the effects of induced field rotation on water ice detection of Tianwen-1 full-polarimetric Mars Rover Penetrating Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13. DOI: 10.1109/TGRS.2021.3138463. [25] Mills M M, Mcewen A S, Okubo C H. A preliminary regional geomorphologic map in Utopia Planitia of the Tianwen-1 Zhurong landing region[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094629. DOI:10.1029/2021GL094629. [26] Ding L, Zhou R, Yu T, et al.Surface characteristics of the Zhurong Mars rover traverse at Utopia Planitia[J]. Nature Geoscience, 2022, 15(3): 171-176. DOI:10.1038/s41561-022-00905-6. [27] Fa W Z, Wieczorek M A.Regolith thickness over the lunar nearside: Results from Earth-based 70-cm Arecibo radar observations[J]. Icarus, 2012, 218(2): 771-787. DOI:10.1016/j.icarus.2012.01.010. [28] Ulaby F T, Long D G, Blackwell W J, et al.Microwave radar and radiometric remote sensing[M]. Ann Arbor: The University of Michigan Press, 2014. [29] Zent A P, Hecht M H, Cobos D R, et al.Initial results from the Thermal and Electrical Conductivity Probe (TECP) on Phoenix[J]. Journal of Geophysical Research, 2010, 115(E3). DOI:10.1029/2009JE003420. [30] Castaldo L, Mège D, Gurgurewicz J, et al.Global permittivity mapping of the Martian surface from SHARAD[J]. Earth and Planetary Science Letters, 2017, 462: 55-65. DOI:10.1016/j.epsl.2017.01.012. [31] Demidov N E, Bazilevskii A T, Kuz'min R O. Martian soils: Varieties, structure, composition, physical properties, drillability, and risks for landers[J]. Solar System Research, 2015, 49(4): 209-225. DOI:10.1134/S0038094615040024. [32] Wu B, Dong J, Wang Y R, et al.Landing site selection and characterization of Tianwen-1 (Zhurong rover) on Mars[J]. Journal of Geophysical Research: Planets, 2022, 127(4). DOI:10.1029/2021JE007137. [33] 李雁斌, 王凤姣, 江利中. 小行星浅表探测雷达技术[J]. 制导与引信, 2015, 36(1): 51-58. DOI: 10.3969/j.issn.1671-0576.2015.01.012. [34] Chen Z Y, Wu B, Wang Y R, et al. Rock abundance and erosion rate at the Zhurong landing site in southern Utopia Planitia on Mars[J]. Earth and Space Science, 2022, 9(8): e2022EA002252. DOI:10.1029/2022ea002252. [35] Yee K.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307. DOI:10.1109/TAP.1966.1138693. [36] Warren C, Giannopoulos A, Giannakis I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163-170. DOI:10.1016/j.cpc.2016.08.020. [37] Wu Z H, Huang N E.Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. DOI:10.1142/S1793536909000047. [38] Dong Z H, Fang G Y, Zhao D, et al. Dielectric properties of lunar subsurface materials[J]. Geophysical Research Letters, 2020, 47(22): e2020GL089264. DOI:10.1029/2020gl089264. [39] Clark B C, Baird A K, Rose H J Jr, et al. Inorganic analyses of Martian surface samples at the Viking landing sites[J]. Science, 1976, 194(4271): 1283-1288. DOI: 10.1126/science.194.4271.1283. [40] Warner N H, Golombek M P, Ansan V, et al.In situ and orbital stratigraphic characterization of the InSight landing site—a type example of a regolith-covered lava plain on Mars[J]. Journal of Geophysical Research: Planets, 2022, 127(4). DOI:10.1029/2022JE007232. [41] Thomson B J, Grosfils E B, Bussey D B J, et al. A new technique for estimating the thickness of mare basalts in Imbrium Basin[J]. Geophysical Research Letters, 2009, 36(12): L12201. DOI:10.1029/2009gl037600. |