[1] 陈经纬, 李宇, 陈俊, 等. 基于MFF-Deeplabv3+ 网络的高分辨率遥感影像建筑物提取方法[J/OL]. 中国科学院大学学报.(2023-03-21)[2023-05-10]. DOI:10.7523/j.ucas.2023.010. [2] 王雪英, 郭卫华. 面向对象的高分一号卫星影像大棚信息提取研究[J].湖北农业科学, 2019,58(24):217-220.DOI:10.14088/j.cnki.issn0439-8114.2019.24.053. [3] 汤紫霞, 李蒙蒙, 汪小钦, 等. 基于GF-2遥感影像的葡萄大棚信息提取[J].中国农业科技导报, 2020,22(11):95-105.DOI:10.13304/j.nykjdb.2019.0759. [4] Yang D D, Chen J, Zhou Y, et al. Mapping plastic greenhouse with medium spatial resolution satellite data: development of a new spectral index[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128: 47-60.DOI:10.1016/j.isprsjprs.2017.03.002. [5] Shi L F, Huang X J, Zhong T Y, et al. Mapping plastic greenhouses using spectral metrics derived from GaoFen-2 satellite data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 13: 49-59.DOI:10.1109/JSTARS.2019.2950466. [6] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.DOI:10.1007/978-3-319-24574-4_28. [7] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA.IEEE,2020:5686-5696.DOI: 10.1109/CVPR.2019.00584. [8] Tan M X, Le Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. 2019: arXiv: 1905.11946.(2019-05-24)[2023-05-10]. https://arxiv.org/abs/1905.11946. [9] Li M, Zhang Z J, Lei L P, et al. Agricultural greenhouses detection in high-resolution satellite images based on convolu-tional neural networks: comparison of faster R-CNN, YOLO v3 and SSD[J]. Sensors, 2020, 20(17): 4938. DOI: 10.3390/s20174938. [10] Redmon J, Farhadi A. YOLOv3: An incremental improve-ment[EB/OL]. 2018: arXiv: 1804.02767.(2018-04-08)[2023-05-10]. https://arxiv.org/abs/1804.02767. [11] Feng Q L, Niu B W, Chen B A, et al. Mapping of plastic greenhouses and mulching films from very high resolution remote sensing imagery based on a dilated and non-local convolutional neural network[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102441. DOI: 10.1016/j.jag.2021.102441. [12] Baghirli O, Ibrahimli I, Mammadzada T. Greenhouse seg-mentation on high-resolution optical satellite imagery using deep learning techniques[EB/OL]. 2020: arXiv: 2007. 11222.(2020-07-22)[2023-05-10]. https://arxiv.org/abs/2007.11222. [13] Feng J N, Wang D L, Yang F, et al. PODD: a dual-task detection for greenhouse extraction based on deep learning[J]. Remote Sensing, 2022, 14(19): 5064. DOI: 10. 3390/rs14195064. [14] Zhang X P, Cheng B, Chen J F, et al. High-resolution boundary refined convolutional neural network for automatic agricultural greenhouses extraction from GaoFen-2 satellite imageries[J]. Remote Sensing, 2021, 13(21): 4237. DOI: 10.3390/rs13214237. [15] Zhang Z X, Liu Q J, Wang Y H. Road extraction by deep residual U-net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753. DOI: 10.1109/LGRS.2018.2802944. [16] Liu Z, Mao H Z, Wu C Y, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 11966-11976. DOI: 10.1109/CVPR 52688.2022.01167. [17] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Com-puter Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778. DOI: 10.1109/CVPR.2016.90. [18] Liu Z, Lin Y T, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2022: 9992-10002. DOI: 10.1109/ICCV48922.2021.00986. [19] Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 13708-13717. DOI: 10.1109/CVPR46437.2021. 01350. [20] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19.DOI:10.1007/978-3-030-01234-2_1. [21] Takikawa T, Acuna D, Jampani V, et al. Gated-SCNN: gated shape CNNs for semantic segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea (South). IEEE, 2020: 5228-5237. DOI: 10.1109/ICCV.2019.00533. [22] Zhen M M, Wang J L, Zhou L, et al. Joint semantic segmentation and boundary detection using iterative pyramid contexts[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 13663-13672. DOI: 10.1109/CVPR42600.2020.01368. [23] Loshchilov I, Hutter F. Fixing weight decay regularization in Adam[EB/OL]. 2017: arXiv: 1711.05101.(2017-11-14)[2023-05-10]. https://arxiv.org/abs/1711.05101. [24] Ding L, Tang H, Bruzzone L. LANet: local attention embedding to improve the semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 426-435. DOI: 10.1109/TGRS.2020.2994150. [25] Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmen-tation[C]//European Conference on Computer Vision. Cham: Springer, 2018: 833-851.10.1007/978-3-030-01234-2_49. |