[1] Bennett K, Demiriz A.Semi-supervised support vector machines[C]//Advances in Neural Information processing systems. Cambridge, MA, USA. MIT Press, 1998:368-374.DOI: 10.5555/340534.340671. [2] Joachims T.Transductive inference for text classification using support vector machines[C]// Proceedings of the Sixteenth International Conference on Machine Learning 99. San Francisco, CA, USA. Morgan Kaufmann Publishers Inc,1999:200-209. DOI: 10.5555/645528.657646. [3] Pan D W, Nie L Q, Kang W X, et al.UAV anomaly detection using active learning and improved S3VM model[C]//2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence(ICSMD). Xi' an, China. IEEE,2020:253-258. DOI:10.1109/ICSMD50554.2020.9261709. [4] Tao J T, Zhang N N, Chang J Y, et al.Unlabeled sample selection for mineral prospectivity mapping by semi-supervised support vector machine[J]. Natural Resources Research, 2022,31(5): 2247-2269. DOI:10.1007/s11053-022-10093-0. [5] Kawashima T, Fujisawa H.Robust and sparse regression in generalized linear model by stochastic optimization[J]. Japanese Journal of Statistics and Data Science, 2019,2(2): 465-489. DOI:10.1007/s42081-019-00049-9. [6] Hung H, Jou Z Y, Huang S Y.Robust mislabel logistic regression without modeling mislabel probabilities[J]. Biometrics, 2018, 74(1): 145-154. DOI:10.1111/biom.12726. [7] Kawashima T, Fujisawa H.Robust and Sparse Regression via γ-Divergence[J]. Entropy, 2017,19(11):608. DOI:10.3390/e19110608. [8] Laine S, Aila T. Temporal ensembling for semi-supervised learning[EB/OL]. arXiv preprint arXiv:1610.02242, (2016-10-7)[2024-4-9]. https://arxiv.org/abs/1610.02242. [9] Tarvainen A, Valpola H.Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[C]//Advances in neural information processing systems. Red Hook, NY, USA. Curran Associates Inc, 2017:1195-1204. DOI: 10.5555/3294771.3294885. [10] Al-Azzam N, Shatnawi I.Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer[J]. Annals of Medicine and Surgery, 2021, 62: 53-64. DOI:10.1016/j.amsu.2020.12.043. |