[1] Xu J M, Li Z, Tang H H, et al.Significant influence of nonlinear friction torque on motion performance of tracking turntables[J]. Tribology International, 2019, 136:148-154. DOI: 10.1016/j.triboint.2019.03.059 [2] 王蜀泉, 赵光恒. 基于模糊控制的卫星大角度姿态机动控制方法研究[J]. 中国科学院研究生院学报, 2006, 23(1): 111-117. DOI: 10.3969/j.issn.1002-1175.2006.01.016. [3] Wang J H, Ruan P, Xie Y J, et al.Design of U-shaped frame of spaceborne turntable based on multi-constraint topology optimization method[J]. Applied Sciences, 2024, 14(13): 5842. DOI: 10.3390/app14135842. [4] 王泽, 姜斌, 程月华, 等. 一种基于生成对抗网络的卫星异常检测方法[J]. 空间控制技术与应用, 2023, 49(1): 113-120. DOI: 10.3969/j.issn.1674-1579.2023.01.013. [5] 孙宇豪, 李国通, 张鸽. 距离相关系数融合GPR模型的卫星异常检测方法[J]. 北京航空航天大学学报, 2021, 47(4): 844-852. DOI: 10.13700/j.bh.1001-5965.2020.0041. [6] Lei Y G, Yang B, Jiang X W, et al.Applications of machine learning to machine fault diagnosis: A review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587. DOI: 10.1016/j.ymssp.2019.106587. [7] Luo W, Yang W, He J L, et al.Fault diagnosis method based on two-stage GAN for data imbalance[J]. IEEE Sensors Journal, 2022, 22(22): 21961-21973. DOI: 10.1109/JSEN.2022.3211021. [8] Ren Z J, Zhu Y S, Liu Z, et al.Few-shot GAN: Improving the performance of intelligent fault diagnosis in severe data imbalance[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3516814. DOI: 10.1109/TIM.2023.3271746. [9] Yan K, Su J Y, Huang J, et al.Chiller fault diagnosis based on VAE-enabled generative adversarial networks[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(1): 387-395. DOI: 10.1109/TASE.2020.3035620. [10] Lu S F, Tang X L, Zhu Y J, et al.A cloud-edge collaborative intelligent fault diagnosis method based on LSTM-VAE hybrid model[C]//2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). June 26-28, 2021. Washington, DC, USA. IEEE, 2021: 207-212. DOI: 10.1109/cscloud-edgecom52276.2021.00045. [11] Baptista M, Sankararaman S, de Medeiros I P, et al. Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling[J]. Computers & Industrial Engineering, 2018, 115: 41-53. DOI: 10.1016/j.cie.2017.10.033. [12] de Oliveira B N, Valk M, Marcondes Filho D. Fault detection and diagnosis of batch process dynamics using ARMA-based control charts[J]. Journal of Process Control, 2022, 111: 46-58. DOI: 10.1016/j.jprocont.2022.01.005. [13] 陈予恕. 机械故障诊断的非线性动力学原理[J]. 机械工程学报, 2007, 43(1): 25-34. DOI: 10.3321/j.issn:0577-6686.2007.01.005. [14] Mogren O.C-RNN-GAN: Continuous recurrent neural networks with adversarial training[EB/OL]. 2016: 1611.09904. DOI: 10.48550/arXiv.1611.09904. [15] Yoon J, Jarrett D, Schaar M V D.Time-series Generative Adversarial Networks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019: 494. DOI: 10.5555/3454287.3454781. [16] Borji A.Pros and cons of GAN evaluation measures: New developments[J]. Computer Vision and Image Understanding, 2022, 215: 103329. DOI: 10.1016/j.cviu.2021.103329. [17] Xia X, Pan X Z, Li N, et al.GAN-based anomaly detection: A review[J]. Neurocomputing, 2022, 493: 497-535. DOI: 10.1016/j.neucom.2021.12.093. [18] Desai A, Freeman C, Wang Z H, et al.TimeVAE: A variational auto-encoder for multivariate time series generation[EB/OL]. 2021: 2111.08095. DOI: 10.48550/arXiv.2111.08095 [19] Rybkin O, Daniilidis K, Levine S.Simple and effective VAE training with calibrated decoders[C]//International conference on machine learning. PMLR, 2021: 9179-9189. DOI: 10.48550/arXiv.2006.13202 [20] 张思慧, 吴云龙, 张毅, 等. 一种基于联合变分自编码器的卫星重力数据粗差探测方法研究[J]. 武汉大学学报(信息科学版), 2024, 49(6): 986-995. DOI: 10.13203/j.whugis20230226. [21] Yang L, Zhang Z L, Song Y, et al.Diffusion models: A comprehensive survey of methods and applications[J]. ACM Computing Surveys, 2024, 56(4): 1-39. DOI: 10.1145/3626235. [22] Zhu Q B, Han J L, Chai K, et al.Time series analysis based on informer algorithms: A survey[J]. Symmetry, 2023, 15(4): 951. DOI: 10.3390/sym15040951. [23] 戴前伟, 丁浩, 张华, 等. 基于变分模态分解和奇异谱分析的GPR信号去噪[J]. 吉林大学学报 (地球科学版), 2022, 52(3): 701-712. DOI: 10.13278/j.cnki.jjuese.20210243. [24] 陶景桥, 孙小松, 李明. 自旋卫星测试转台精度分析[J]. 空间控制技术与应用, 2010, 36(2): 20-24, 30. DOI: 10.3969/j.issn.1674-1579.2010.02.004 [25] Zhang X R, Rane K P, Kakaravada I, et al.Research on vibration monitoring and fault diagnosis of rotating machinery based on Internet of Things technology[J]. Nonlinear Engineering, 2021, 10(1): 245-254. DOI: 10.1515/nleng-2021-0019. [26] Anowar F, Sadaoui S, Selim B.Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne)[J]. Computer Science Review, 2021, 40: 100378.DOI: 10.1016/j.cosrev.2021.100378. [27] Zhang C, Jiang D F, Jiang K H, et al.A hierarchical multivariate denoising diffusion model[J]. Information Sciences, 2023, 648: 119623. DOI: 10.1016/j.ins.2023.119623. [28] Chicco D, Warrens M J, Jurman G.The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. Peerj computer science, 2021, 7: e623. DOI: 10.7717/peerj-cs.623. [29] Zhou H M, Deng Z H, Xia Y Q, et al.A new sampling method in particle filter based on Pearson correlation coefficient[J]. Neurocomputing, 2016, 216: 208-215. DOI: 10.1016/j.neucom.2016.07.036. [30] Liao S J, Ni H, Sabate-Vidales M, et al.Sig-Wasserstein GANs for conditional time series generation[J]. Mathematical Finance, 2024, 34(2): 622-670. DOI: 10.1111/mafi.12423. [31] Qahtan A, Wang S J, Zhang X L.KDE-track: An efficient dynamic density estimator for data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(3): 642-655. DOI: 10.1109/TKDE.2016.2626441. [32] 朱杰, 陈黎飞. 核密度估计的聚类算法[J]. 模式识别与人工智能, 2017, 30(5): 439-447. DOI: 10.16451/j.cnki.issn1003-6059.201705006. |