[1] Hundman K, Constantinou V, Laporte C, et al.Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London United Kingdom. ACM, 2018: 387-395. DOI: 10.1145/3219819.3219845. [2] Fu N, Zhang G H, Xia K Q, et al.Research on fault detection and principal component analysis for spacecraft feature extraction based on kernel methods[J]. Open Astronomy, 2022, 31(1): 333-339. DOI: 10.1515/astro-2022-0194. [3] 王志远,孙鹏菊,王海波,等. 基于聚类分类算法的IGBT健康状态分类研究[J]. 电工电能新技术, 2021, 40(11): 1-8. DOI: 10.12067/ATEEE2103041. [4] Park D, Hoshi Y, Kemp C C.A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551. DOI: 10.1109/LRA.2018.2801475. [5] Zeng A L, Chen M X, Zhang L, et al.Are transformers effective for time series forecasting?[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9): 11121-11128. DOI: 10.1609/aaai.v37i9.26317. [6] Xu Z J, Zeng A,Xu Q. FITS: Modeling Time Series with 10k Parameters[EB/OL].2023: arXiv: 2307.03756.(2023-7-6)[2025-6-25]. https://arxiv.org/abs/2307.03756. [7] Wu H X, Hu T G, Liu Y, et al. TimesNet: Temporal 2D-variation modeling for general time series analysis[EB/OL].2022: arXiv: 2210.02186.(2022-10-5)[2025-6-25]. https://arxiv.org/abs/2210.02186. [8] 彭喜元, 庞景月, 彭宇, 等. 航天器遥测数据异常检测综述[J]. 仪器仪表学报, 2016, 37(9): 1929-1945. DOI: 10.19650/j.cnki.cjsi.2016.09.002. [9] Nie Y Q, Nguyen N H, Sinthong P, et al. A time series is worth 64 words: long-term forecasting with transformers[EB/OL].2022. arXiv: 2211.14730.(2022-11-27)[2025-6-25]. https://arxiv.org/abs/2211.14730. [10] Kim T, Kim J, Tae Y, et al. Reversible instance normalization for accurate time-series forecasting against distribution shift[C/OL]//International Conference on Learning Representations. Virtual, Online, 2022. (2022-1-29)[2025-6-25]. https://openreview.net/forum?id=cGDAkQo1C0p. [11] Yu G Q, Zou J, Hu X W, et al. Revitalizing multivariate time series forecasting: Learnable decomposition with inter-series dependencies and intra-series variations modeling[EB/OL].2024: arXiv: 2402.12694.(2024-2-20)[2025-6-25]. https://arxiv.org/abs/2402.12694v5. [12] 王爱玲. “太极一号”卫星2020年部分分系统工程参数[DS/OL]. V1. Science Data Bank, (2022)[2025-06-25]. https://doi.org/10.57760/sciencedb.o00009.00053. DOI:10.57760/sciencedb.o00009.00053. [13] Tax D M J, Duin R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66. DOI: 10.1023/B:MACH.0000008084.60811.49. [14] Liu F T, Ting K M, Zhou Z H.Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining. December 15-19, 2008, Pisa, Italy. IEEE, 2008: 413-422. DOI: 10.1109/ICDM.2008.17. [15] Ruff L, Vandermeulen R, Goernitz N, et al. Deep one-class classification[C]//Proceedings of the 35th International Conference on Machine Learning. July 10-15, 2018, Stockholm, Swede,PMLR 80, 2018: 4393-4402.(2018)[2025-6-25]. https://proceedings.mlr.press/v80/ruff18a.html. [16] Zhou T, Ma Z Q, Wen Q S, et al. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting[EB/OL].2022: arXiv: 2201.12740.(2022-1-30)[2025-6-15]. https://arxiv.org/abs/2201.12740v3. [17] Zhou B, Liu S H, Hooi B, et al.BeatGAN: Anomalous rhythm detection using adversarially generated time series[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. August 10-16, 2019. Macao, China. International Joint Conferences on Artificial Intelligence Organization, 2019: 4433-4439. DOI: 10.24963/ijcai.2019/616. [18] Su Y, Zhao Y J, Niu C H, et al.Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage AK USA. ACM, 2019: 2828-2837. DOI: 10.1145/3292500.3330672. [19] Xu J H, Wu H X, Wang J M, et al. Anomaly transformer: Time series anomaly detection with association discrepancy[EB/OL].2021: arXiv: 2110.02642.(2021-10-6)[2025-6-25]. https://arxiv.org/abs/2110.02642. [20] Shen L F, Li Z C, Kwok J T. Timeseries anomaly detection using temporal hierarchical one-class network[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems(NIPS '20). Vancouver, BC, Canada, 2020: 13016-13026. (2020-12-6)[2025-6-25]. https://dl.acm.org/doi/abs/10.5555/3495724.3496816. [21] Lai K H, Zha D C, Xu J J, et al. Revisiting time series outlier detection: Definitions and benchmarks[DS/OL]//35th Conference on Neural Information Processing Systems(NeurIPS2021) Track on Datasets and Benchmarks. (2021-7-29)[2025-6-25]. https://openreview.net/forum?id=r8IvOsnHchr. |