[1] Yang S X, Hou G Y, Dai J H, et al. Spectroscopic investigation of the multiphoton photolysis reactions of bromomethanes (CHBr3, CHBr2Cl, CHBrCl2, and CH2Br2) at near-ultraviolet wavelengths[J]. Journal of Physical Chemistry A, 2010, 114 (14): 4785-4790.[2] Wang G J, Zhang H, Zhu R, et al. Photodissociation of 1-bromo-2-chloroethane at 266 nm[J]. Chemical Physics, 1999, 241(2): 213-219.[3] Hua L, Shen H, Zhang C, et al. Photodissociation study of 1, 2-C2H4BrCl at 234 and 267 nm by the ion-velocity imaging technique[J]. Chemical Physics Letters, 2008, 460 (1-3): 50-54.[4] Lee K S, Paul D, Hong K, et al. Photodissociation dynamics of C2H4BrCl: nonadiabatic dynamics with intrinsic Cs symmetry[J]. Bulletin of the Korean Chemical Society, 2009, 30(12): 2962-2968.[5] Han K L, He G Z. Photochemistry of arylhalides: Photodissociation dynamics[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2007, 8(2): 55-66.[6] Ji L, Tang Y, Zhu R, et al. Photodissociationdynamics of CH2Br2 near 234 and 267 nm[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 67(1): 273-280.[7] Liu P, Tang B, Zhang B. Velocity map imaging of the photolysis of n-C4H9Br in UV region[J]. Chemical Physics, 2007, 340(1-3): 141-148.[8] Zhang F, Cao Z Z, Qin X, et al. C—Br bond dissociation mechanisms of 2-bromothiophene and 3-bromothiophene at 267nm[J]. Acta Physico-Chimica Sinica, 2008, 24(8): 1335-1341.[9] Shen H, Hua L, Cao Z, et al. C—Br bond fission dynamics in ultraviolet photodissociation of propargyl bromide[J]. Optics Communication, 2009, 282(3): 387-391.[10] Zhu R, Tang B, Zhang X, et al. Photodissociation dynamics of 2-Bromopropane using velocity map imaging technique[J]. Journal of Physical Chemistry A, 2010, 114(21): 6188-6193.[11] Liu Y J, Fang W H. Multireference and spin-orbit calculations on photodissociations of hydrocarbon halides[J]. Advances in Quantum Chemistry, 2009, 56: 1-29.[12] Chen S F, Liu F Y, Liu Y J. An ab initio investigation of the mechanisms of photodissociation in bromobenzene and iodobenzene[J]. Journal of Chemical Physics, 2009, 131(12): 124304[13] Li W Z, Chen S F, Liu Y J. Relativistic multireference calculation of photodissociation of o-, m-, and p-bromofluorobenzene[J]. Journal of Chemical Physics, 2011, 134(11):114303[14] Li W Z, Pei Y W, Xiao C P, et al. Spin-orbit ab initio investigation of the photodissociation of C2H5Br[J]. Structural Chemistry, 2013, 24(5):1591-1595.[15] Lee H L, Lee P C, Tsai P Y, et al. Photodissociation of dibromoethanes at 248 nm: an ignored channel of Br2 elimination[J]. Journal of Chemical Physics, 2009, 130(18):184308.[16] Lee Y R, Chen C C, Lin S M. Photodissociation of CH2Br2, 1, 1-and 1, 2-C2H4Br2 at 248 nm: a simple C—Br bond fission versus a concerted three-body formation[J]. Journal of Chemical Physics, 2003, 118(23):10494.[17] Tang Y, Ji L, Tang B, et al. Studies on photodissociation of alkyl bromides at 234 and 267 nm[J]. Chemical Physics Letters, 2004, 392(4-6): 493-497.[18] Wang Y, Zhang S, Zheng Q, et al. C—Br bond fission dynamics in ultraviolet photodissociation of 1, 2-dibromoethane[J]. Chemical Physics Letters, 2006, 423(1-3): 106-111.[19] Roos B O, The complete active space SCF method in a fock-matrix-based super-CI formulation[J]. International Journal of Quantum Chemistry, 1980, 18(S14): 175-189.[20] Roos B O, Taylor P R, Siegban P E M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach[J]. Chemical Physics, 1980, 48(2): 157-173.[21] Finley J, Malmqvist P-Å, Roos B O, et al. The multi-state CASPT2 method[J]. Chemical Physics Letters, 1998, 288(2-4): 299-306.[22] Roos B O, Malmqvist P-Å. Relativistic quantum chemistry: the multiconfigurational approach[J]. Physical Chemistry Chemical Physics, 2004, 6(11): 2919-2927.[23] Roos B O, Lindh R, Malmqvist P-Å, et al. Main group atoms and dimers studied with a new relativistic ANO basis set[J]. Journal of Physical Chemistry A, 2004, 108(15): 2851-2858.[24] Aquilante F, Vico L De, Ferré N, et al. Software news and update MOLCAS 7: The next generation[J]. Journal Computational Chemistry, 2010, 31(1): 224-247.[25] Becke A D. Density-functional thermochemistry.Ⅲ. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5653.[26] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.[27] Woon D E, Dunning Jr T H. Gaussian basis sets for use in correlated molecular calculations. Ⅲ. The atoms aluminum through argon[J]. Journal of Chemical Physics, 1993, 98(2): 1358-1371.[28] Dunning Jr T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen[J]. Journal of Chemical Physics, 1989, 90 (2): 1007-1023.[29] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, revision A[CP]. Gaussian Inc, Wallingford, CT, 2009.[30] Moore C E. Atomic energy levels[M]. Washington DC: US Government Printing Office, 1971. |