[1] Bieri G, Åsbrink L, Niessen W V. 30.4-nm He (II) photoelectron spectra of organic molecules: Part VII. Miscellaneous compounds [J]. J Electron Spectrosc Relat Phenom, 1982, 27(2):129-178.
[2] Kobayashi T, Nagakura S. Photoelectron spectra of substituted benzenes [J]. Bull Chem Soc Jpn, 1974, 47(10):2563-2572.
[3] Baker A D, May D P, Turner D W. Molecular photoelectron spectroscopy. Part VII. The vertical lonisatisn potentials of benzene and some of its monosubstituted and I ,4-Disubstituted Derivatives [J]. J Chem Soc (B), 1968:22-34.
[4] Kimura K, Katsumata S, Achiba Y, et al. Handbook of HeI photoelectron spectra of fundamental organic molecules [M]. Tokyo: Japan Scientific Societies Press, 1981.
[5] Klasinc L, Kova? B, Güsten H. Photoelectron spectra of acenes. Electronic structure and substituent effects [J]. Pure Appl Chem, 1983, 55(2): 289-298.
[6] Dunbar R C, Chen J H, So H Y, et al. Infrared fluorescence relaxation of photoexcited gas-phase ions by chopped-laser two-photon dissociation [J]. J Chem Phys, 1987, 86(4):2081-2086.
[7] Flammang R, Barbieux-Flammang M, et al. Ionized benzonitrile and its distonic isomers in the gas phase [J]. J Phys Chem A, 2001, 105(37):8579-8587.
[8] Xu H, Johnson P M, Sears T J. Photoinduced Rydberg ionization spectroscopy of the B state of benzonitrile cation [J]. J Chem Phys, 2006, 125(16):164331-164337.
[9] Youn Y Y, Kwon C H, Choe J C, et al. Discovery of long-lived excited electronic states of chlorobenzene, bromobenzene, benzonitrile, and phenyl acetylene cations [J]. J Chem Phys, 2002, 117(6):2538-2545.
[10] Griebel R, Hohlneicher G, Dorr F. Photoelectron spectra of substituted benzenes [J]. J Electron Spectrosc Relat Phenom, 1974, 4(10):185-206.
[11] Neijzen B J M, Delange C A. Photoelectron spectroscopy of mono- and dicyanobenzenes and their perfluoro derivatives [J]. J Electron Spectrosc Relat Phenom, 1978, 14(3):187-199.
[12] Rabalais J W, Colton R J. Electronic interaction between the phenyl group and its unsaturated substituents [J]. J Electron Spectrosc Relat Phenom, 1972/73, 1(1):83-99.
[13] Mclafferty F W, Bente P F, Kornfeld R, et al. Collisional activation spectra of organic ions [J]. J Am Chem Soc, 1973, 95(7):2120-2129.
[14] Watanabe K, Nakayama T, Mottl J. Ionization potentials of some molecules [J]. J Quan Spectrosc Radiat Transfer, 1962, 2(4):369-382.
[15] Palmer M H, Moyes W, Spiers M. The electronic structure of substituted benzenes; ab initio calculations and photoelectron spectra for phenol, the methyl- and fluoro-derivatives, and the dihydroxybenzenes [J]. J Mol Struct, 1980, 62:165-187.
[16] Turner D W. Ionization potentials [J]. Advan Phys Org Chem, 1966, 4:31-71.
[17] Kwon C H, Kim H L, Kim M S. Vibrational analysis of vacuum ultraviolet mass-analyzed threshold Ionization spectra of phenylacetylene and benzonitrile [J]. J Phys Chem A, 2003, 107(50):10969-10975.
[18] Araki M, Sato S I, Kimura K. Two-color zero kinetic energy photoelectron spectra of benzonitrile and its van der waals complexes with argon. Adiabatic ionization potentials and cation vibrational frequencies [J]. J Phys Chem, 1996, 100(25):10542-10546.
[19] Coggiola M J, Cosby P C, Helm H, et al. One-photon infrared photodissociation of polyatomic ions in a fast beam [J]. J Phys Chem, 1987, 91(11):2794-2800.
[20] Burgers P C, Holmes J L. Fragmentation rate constants and appearance energies for reactions having a large kinetic shift and the energy partitioning in their metastable decomposition [J]. Int J Mass Spectrom Ion Processes, 1984, 58:15-24.
[21] So H Y, Dunbar R C. Time-resolved slow dissociation of benzonitrile ions by trapped-ion ion cyclotron resonance photodissociation [J]. J Am Chem Soc, 1988, 110(10):3080-3083.
[22] Wight A C, Beauchamp J L. Infrared laser photochemistry of vibrationally excited cyanobenzene cation prepared by internal conversion following electronic excitation [J]. Chem Phys Lett, 1981, 77(1):30-35.
[23] Dong H, Chen B Z, Huang M B, et al. Electronic states of the C6H5CN+ ion studied using multiconfiguration wave functions [J]. Molecular Physics, 2010, 108(15):1991-1997.
[24] Roos B O. Ab initio methods in quantum chemistry part 2 //Advances in Chemical Physics, Vol 69, The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations. New York: Wiley, 1987: 399-445.
[25] Andersson K, Roos B O. Multiconfigurational second-order perturbation theory: A test of geometries and binding energies [J]. Int J Quantum Chem, 1993, 45(6):591-607.
[26] Andersson K, Roos B O. Multiconfigurational second-order perturbation [M]//Yarkony D R. Modern Electronic Structure Theory. Singapore:World Scientific, 1995: 55.
[27] Li W Z, Huang M B, Chen B Z. The 12A1, 12B2, and 12A2 states of the SO+2 ion studied using multiconfiguration second-order perturbation theory [J]. J Chem Phys, 2004, 120(10):4677-4682.
[28] Li W Z, Huang M B. C, D, and E electronic states of the SO+2 ion studied using multiconfiguration second-order perturbation theory [J]. J Phys Chem A, 2004, 108(33):6901-6907.
[29] Karlstrom G, Lindh R, Malmqvist P Å, et al. MOLCAS: a program package for computational chemistry [J]. Comput Mater Sci, 2003, 28(2):222-239.
[30] Almlof J, Taylor P R. General contraction of Gaussian basis sets. I. Atomic natural orbitals for first- and second-row atoms [J]. J Chem Phys, 1987, 86(7):4070-4077.
[31] Widmark P O, Malmqvist P Å, Roos B O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions I. First row atoms [J]. Theor Chim Acta, 1990, 77(5):291-306.
[32] Widmark P O, Persson B J, Roos B O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions II. Second row atoms [J]. Theor Chim Acta, 1991, 79(6):419-432.
[33] Chang H B, Huang M B. A theoretical study on the electronic states and O-loss photodissociation of the NO+2 ion [J]. Chem Phys Chem, 2009, 10(3):582-589.
[34] Huber K P,Herzberg G. NIST chemistry webBook, diatomic constants for 12C14N . (1976) . http://webbook.nist.gov.
|