[1]R L Coble. A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys, 1963, 34:1679~1782[2]J Karch, R Birringer, H Gleiter. Ceramics ductile at low temperature. Nature, 1987, 330:556~558[3]A H Chokshi, A Rosen, J Karch, H Gleiter. On the validity of the Hall-Petch relationship on nanocrystalline materials. Scr Metall,1989, 23:1679~1684[4]L Lu, M L Sui, K Lu. Superplastic extensibility of nanocrystalline copper at room temperature. Science, 2000, 287: 1463~1466[5]L Lu, M L Sui, K Lu. Cold rolling of bulk nanocrystalline copper. Acta Materialia, 2001, 49:4127~4134[6]L Lu, M L Sui, K Lu. Superplasticity Extensibility and deformation mechanism in bulk nanocrystalline copper sample. Advanced Engineering Materials, 2001, 9:663~668[7]B Cai, Q P Kong, L Lu, K Lu. Interface controlled diffusional creep of nanocrystalline pure copper. Scr Mater, 1999, 41: 755~759[8]B Cai, Q P Kong, L Lu, K Lu. Low temperature creep of nanocrystalline pure copper, Mater Sci Eng A, 2000, 286: 188~191[9]BCai, Q P Kong, PCui, LLu, KLu. Creep behavior of cold rollednanocrystalline pure copper. Scr Mater, 2001, 45:1407~1411[10]Q P Kong, B Cai, L Lu, K Lu. The creep of nanocrystalline metals and its connection with grain boundary diffusion. Defecft and Diffusion Forum, 2001, 45:188~199[11]L Lu, L B Wang, B Z Ding, K Lu. High-tensile ductility in nanocrystalline copper. J Mater Res, 2000, 15:270~273[12]卢柯,卢磊.金属纳米材料力学性能的研究进展.金属学报,2000,8:785~789[13]L Lu, S X Li, K Lu. An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scr Materialia, 2001, 45: 1163~1169[14]L Lu, N R Tao, L B Wang, B Z Ding, K Lu. Grain growth and strain release in nanocrystalline copper. J Appl Phys, 2001, 11:6408~6414[15]L Lu, L B Wang, B Z Ding, K Lu. Comparison of the thermal stability between electro-deposited and cold-rolled nanocrystalline copper samples. Mater Sci Eng A, 2000, 286:125~129 |