[ 1 ] Shih T H, Lumley J L, Kolmogorov behavior of near2wall turbulence and its applicat ion in turbulence modeling. Comp. Fluid Dyn., 1993, 1:43) 56. [ 2 ] Yang Z, Georgiadis N, Zhu J, Shih T H. Calculations of inletPnozzle flows using a new k2Emodel. AIAA Paper 95 ) 2761, 1995. [ 3 ] Ment er F R. Two2equat ion eddy2 viscosity turbulence models for engineering applications. AIAA J., 1994, 32: 1598) 1605. [ 4 ] Shih T H, Zhu J, Lumley J L. A new Reynolds stress algebraic equat ion model. Comput. MethodsAppl. Mech. Engrg, 1995, 125: 287) 302.[ 5 ] Shih T H, Zhu J, Liou W W, Chen K H, Liu N S, Lumely J L. Modelling of turbul ence swirling flows. 11 th Symp. of Turbulent Shear Flows,1997, 31. 1 ) 31. 6. [ 6 ] Bachalo WD, Johnson D A. An investigation of transonic turbulent boundary layer separation generated on an axisymmetric flowmodel.AIAAPa2per 79 ) 1479, 1979. [ 7 ] Delery J. Experimental investigat ion of turbulence properties in transonic shock boundary2Layer interactions. AIAA J., 1983, 21: 180 )185. [ 8 ] Huang P G, CoakleyT J. An implicit Navier2Stokes code for turbulence flowmodelling. AIAA Paper 92) 0547, 1992. [ 9 ] Leschziner M A. Turbulence modeling for separat ed flows with anisotropy2resolving closures. Phil. Trans. R. Soc. Lond. A, 2000, 358:3247 ) 3277. [ 10] Rogers M M, Moin P. The structure of the vorticity field in homogeneous turbul ent flows. J. Fluid Mech., 1987, 176: 33 ) 66. [ 11] Champagne F H, Harris V G, Corrsin S. Experiments on nearly homogeneous shear flow. J. Fluid Mech., 1970, 41: 81) 139. [ 12] Harris V G, Graham A H, Corrsin S. Further experiments in nearly homogeneous turbulent shear flow. J. Fluid Mech., 1977, 81: 657. [ 13] Tavoularis S, Corrsin S. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. J. Fluid Mech.,1981, 104: 311) 347. |