[1] Kakoschke R, Boesl U, Hermann J, et al. Spectroscopy of molecular ions: Laser-induced fragmentation spectra of COS+, A2Π ← X2Π and B2Σ ← X2Π [J]. Chemical Physics Letters, 1985, 119: 467-472.
[2] Zhang L M, Chen J, Xu H F, et al. A2Πu state-intermediated two-photon dissociation of CS+2 via the first channel [J]. Journal of Chemical Physics, 2001, 114(24): 10768-10772.
[3] Baker J, Konstantaki M, Couris S. A resonance enhanced multiphoton ionization study of the CS2 molecule: The 4p Rydberg states [J]. Journal of Chemical Physics, 1995, 103: 2436-2444.
[4] Xue B, Chen Y, Dai H L. Observation of the singlet-triplet pair of the 4p Rydberg state and assignment of the Rydberg series of SO2 [J]. Journal of Chemical Physics, 2000, 112(5): 2210-2217.
[5] Wu M, Johnson P M. A study of some Rydberg states of CO2 by (3+1) multiphoton ionization spectroscopy [J]. Journal of Chemical Physics, 1989, 91: 7399-7407.
[6] Wu M, Taylor D P, Johnson P M. Resonance enhanced multiphoton ionization photoelectron-spectra of CO2. I. Photoabsorption above the ionization potential [J]. Journal of Chemical Physics 1991, 94: 7596-7601.
[7] Zhang L M, Wang F, Wang Z, et al. Study on the second dissociation channel of CS+2 by using two-photon dissociation [J]. Journal of Physical Chemistry A, 2004, 108: 1342-1347.
[8] Callomon J H.Electronic emission spectra of the carbon disulphide ion, CS+2 [J]. Proc R Soc London, Ser A, 1958, 244: 220-244.
[9] Eland J H D, Danby C J. Photoelectron spectra and ionic structure of carbon dioxide, carbon disulphide and sulphur dioxide [J]. International Journal of Mass Spectrometry and Ion Physics, 1968, 1: 111-119.
[10] Brundle C R, Turner D W. Studies on the photoionisation of the linear triatomic molecules: N2O, COS, CS2 and CO2 using high-resolution photoelectron spectroscopy [J]. International Journal of Mass Spectrometry and Ion Physics, 1969, 2: 195-220.
[11] Frost D C, Lee S T, McDowell C A. Photoelectron spectra of OCSe, SCSe, and CSe2 [J]. Journal of Chemical Physics, 1973, 59: 5484-5493.
[12] Frey R, Gotchev B, Peatman W B, et al. Photoionization resonance study of the (2Π), (2Π), (2Σ+) and C(2Σ</em>+) states of CS+2 and COS+ [J]. International Journal of Mass Spectrometry and Ion Physics, 1978, 26: 137-147.
[13] Wang L S, Reutt J E, Lee Y T, et al. High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams [J]. Journal of Electron Spectrosc. Relat. Phenom., 1988, 47: 167-186.
[14] Brehm B, Eland J H D, Frey R, et al. Dissociation of CS+2 ions studied by photoelectron-photoion coincidence spectroscopy [J]. International Journal of Mass Spectrometry and Ion Physics, 1973, 12: 213-224.
[15] Danis P O, Wyttenbach T, Maier J P. Two-photon absorption spectroscopy of mass-selected ions: N2O+ and CS+2 [J]. Journal of Chemical Physics, 1988, 88: 3451-3455.
[16] Evard D D, Wyttenbach T, Maier J P. Two-photon absorption spectroscopy of ion beams: CS+2 C2Σ+g state characterization [J]. Journal of Physical Chemistry, 1989, 93: 3522-3525.
[17] Hwang W G, Kim H L, Kim M S. State-selected photodissociation dynamics of CS+2 in the C2Σ+g state [J]. Journal of Chemical Physics, 2000, 113: 4153-4157.
[18] Momigny J, Mathieu G, Wankenne H, et al. Collision- and non-collision-induced predissociation in the appearance of S+ and CS+ ions from CS2 under electron impact [J]. Chemical Physics Letters, 1973, 21: 606-610.
[19] Aitchison D, Eland J H D. Dissociative ionisation of CS2 and the formation of S+2 [J]. Chemical Physics, 2001, 263: 449-467.
[20] Balfour W J. The B2Σ+u → X2Πg and A2Πu → X2Πg band systems of the CS+2 ion [J]. Canadian Journal of Phys, 1976, 54: 1969-1978.
[21] Zhuang X J, Zhang L M, Wang J T, et al . The Photo-depletion and Photo-fragment Excitation Spectra of CS+2 via B2Σ+u←X2Πg,3/2 Transitions [J]. Chinese Journal of Chemical Physics, 2005, 18(5): 657.
[22] Zhuang X J, Zhang L M, Wang J T, et al. Study on the photodissociation spectra of CS+2 via B2Σ+u and C2Σ+g electronic states [J]. Journal of Physical Chemistry A, 2006, 110: 6256-6260.
[23] Zhuang X J, Zhang L M, Wang J T, et al. Competition between the dissociation channels via H←B2Σ+u and C2Σ+g ←B2Σ+u transitions for CS+2 ions [J]. Chemical Physics Letters, 2006,432: 74-77.
[24] Wang L, Lee Y T, Shirley D A. Molecular beam photoelectron spectroscopy of SO2: Geometry, spectroscopy, and dynamics of SO+2 [J]. Journal of Chemical Physics, 1987,87(5): 2489-2497.
[25] Holland D M P, MacDonald M A, Hayes M A, et al. An experimental and theoretical study of the valence shell photoelectron spectrum of sulphur dioxide [J]. Chemical Physics, 1994, 188: 317-338.
[26] Dujardin G, Leach S. Photoion-fluorescence photon coincidence study of radiative and dissociative relaxation processes in VUV photoexcited SO2. Fluorescence of SO+2, SO+, and SO [J]. Journal of Chemical Physics, 1981, 75(6): 2521-2531.
[27] Weiss M J, Hsieh T C, Meisels G G. Fragmentation of SO+2 prepared in state selected vibrational levels [J]. Journal of Chemical Physics, 1979, 71: 567-570.
[28] Thomas T F, Dale F, Paulson J F. The photodissociation spectrum of SO+2 [J]. Journal of Chemical Physics, 1986, 84(3): 1215-1227.
[29] Wang Z, Zhang L M, Li J, et al. The bend vibration excitation of SO+2( ) in the range of 291-312nm [J]. Journal of Molecular Spectroscopy, 2003, 221: 139-141.
[30] Zhang L M, Wang Z, Li J, et al. Studies on the photodissociation and symmetry of SO+2( ) [J]. Journal of Chemical Physics, 2003, 118(20): 9185-9191.
[31] Herzberg G. Electronic spectra and electronic structures of polyatomic molecules [M]. New York: Litton Educational, 1966: 248,445.
[32] Brehm B, Eland J H D, Frey R, et al. Predissociation of SO+2 ions studied by photoelectron—photoion coincidence spectroscopy [J]. International Journal of Mass Spectrometry and Ion Physics, 1973,2: 197-211.
[33] Norwood K, Ng C Y. A study of the unimolecular dissociation of SO+2 (C, D, E) using the photoelectron-photoion coincidence method [J]. Journal of Chemical Physics, 1990, 93(9): 6440-6447.
[34] Hillier I H, Saunders V R. A theoretical interpretation of the bonding, and the photoelectron and ultra-violet spectra of sulphur dioxide [J]. Molecular Physics, 1971, 22: 193-201.
[35] Dalgarno A, Fox J L. Unimolecular and bimolecular ion-molecule reaction dynamics //Ng C Y, Baer T, Powis I. Wiley Series in Ion Chemistry and Physics. Chichester: Wiley, 1994: 1.
[36] Liu J, Chen W, Hsu C W, et al. High resolution pulsed field ionization-photoelectron study of CO+2(X2Πg) in the energy range of 13.6~14.7eV [J]. Journal of Chemical Physics, 2000, 112: 10767-10777.
[37] Liu J, Hochlaf M, Ng C Y. Pulsed field ionization-photoelectron bands for CO+2(A2Πu and B2Σ+u) in the energy range of 17.2~19.0eV: An experimental and theoretical study [J]. Journal of Chemical Physics, 2000, 113: 7988-7999.
[38] Yang M, Zhang L, Zhuang X, et al. The two-photon dissociation spectrum of CO+2 via A2Πu,1/2 (υ1υ20)←X2Πg,(000) transitions [J]. Journal of Chemical Physics, 2008, 128: 164308.
[39] Gauyacq D, Larcher C, Rostas J. The emission spectrum of the CO+2 ion: rovibronic analysis of the A2Πu → X2Πg band system [J]. Canadian Journal of Physics, 1979, 57: 1634-1649.
[40] Gauyacq D, Horani M, Leach S, et al. The emission spectrum of the CO+2 ion: B2Σ+u → X2Πg band system [J]. Canadian Journal of Physics, 1975, 53: 2040-2059.
[41] Liu J, Chen W, Hochlaf M, et al. Unimolecular decay pathways of state-selected CO+2 in the internal energy range of 5.2~6.2eV: An experimental and theoretical study [J]. Journal of Chemical Physics, 2003, 118: 149-163.
[42] Bueso-Sanllehi F. Rotational analysis of the 2900A band of CO+2 [J]. Physical Review, 1941, 60: 556-570.
[43] Yang M P, Zhang L M, Lai L K, et al. Study on the photodissociation spectra of CO+2 via C2Σ+g←B2Σ+u/A2Πu←X2Πg, transitions [J]. Chemical Physics Letters, 2009, 481: 41.
[44] Xu H F, Guo Y, Li Q F, et al. Spectroscopic study of N2O+(A2Σ+) by photofragment excitation spectrum [J]. Journal of Chemical Physics, 2003, 119(22): 11609-11614.
[45] Xu H F, Guo Y, Li Q F, et al. Channel switching effect in photodissociating N2O+ ion at 312.5nm [J]. Journal of Chemical Physics, 2004, 121(7): 3069-3073.
[46] Chen B Z, Chang H B, Huang M B. Dissociation of the OCS+ ion in low-lying electronic states studied using multiconfiguration second-order perturbation theory [J]. Journal of Chemical Physics, 2006, 125(5): 054310.
[47] Chen B Z, Huang M B, Chang H B. Low-lying electronic states of the OCS+ ion studied using multiconfiguration second-order perturbation theory . Chemical Physics Letters, 2005, 416: 107-112.
[48] Li W Z, Huang M B. The 12A″, 12A ' and 22A ' electronic states of the H2S+ ion studied using multiconfiguration second-order perturbation theory [J]. Chemical Physics, 2005, 315: 133-141.
[49] Li W Z, Huang M B. Electronic states of the CS+2 ion studied using multiconfiguration second-order perturbation [J]. Chemical Physics, 2004, 304(3): 253-259.
[50] Li W Z, Huang M B. C, D, and E electronic states of the SO+2 ion studied using multiconfiguration second-order perturbation theory [J]. Journal of Physical Chemistry A, 2004, 108(33): 6901-6907.
[51] Li W Z, Huang M B, Chen B Z. The 12A1, 12B2, and 12A2 states of the SO+2 ion studied using multiconfiguration second-order perturbation theory [J]. Journal of Chemical Physics, 2004, 120(10): 4677-4682.
[52] Chang H B, Huang M B. A theoretical study on photodissociation of the A state of the H2S+ ion [J]. Theoretical Chemistry Accounds, 2009, 122, 189-196.
[53] Chang H B, Huang M B. A theoretical study on the electronic states and O-loss photodissociation of the NO+2 ion [J]. Chemical Physics Chemistry, 2009, 10(3): 582-589.
[54] Chang H B, Huang M B. A theoretical study on S-loss photodissociation of the CS+2 ion [J]. Chemical Physics Letters, 2009, 478: 139-143.
[55] Meng Q Y, Huang M B, Chang H B. Theoretical study on the predissociation mechanism of CO+2 (C2Σ+g) [J]. Journal of Physical Chemistry A, 2009, 113(46): 12825-12830.1/21/2
|