[1] 彩万志,花保祯,宋敦伦,等. 昆虫学概论 [M].第3版. 北京:中国农业大学出版社,2009:19-22.
[2] Goodwyn P P. Functional surfaces in biology [M]. Spring Science & Business Media B V, 2009: 55-76.
[3] Wootton R J. Functional morphology of insect wings [J]. Annual Review of Entomology,1992, 37: 113-140.
[4] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta, 1997, 202: 1-8.
[5] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Annals of Botany, 1997, 79: 667-677.
[6] Neinhuis C, Barthlott W. Seasonal changes of leaf surface contamination in beech, oak and ginkgo in relation to leaf micromorphology and wettability [J]. New Phytologist, 1998, 138(1): 91-98.
[7] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial [J]. Advanced Materials, 2002, 14(24): 1857-1860.
[8] Wagner P, Fürstner R, Barthlott W, et al. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces [J]. Journal of Experimental Botany, 2003, 54(385): 1295-1303.
[9] Bhushan B, Jung Y C. Micro-and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces [J]. Nanotechnology, 2006, 17(11): 2758-2772.
[10] Gao X F, Jiang L. Recent studies of natural superhydrophobic bio-surfaces [J]. Physics, 2006, 35(7): 559-564 (in Chinese). 高雪峰,江雷. 天然超疏水生物表面研究的新进展 [J]. 物理,2006,35(7):559-564.
[11] Ren L Q, Wang S J, Tian X M, et al. Non-smooth morphologies of typical plant leaf surfaces and their anti-adhesion effects [J]. Journal of Bionic Engineering, 2007, 4: 33-40.
[12] 戴振东,佟金,仁露泉. 仿生摩擦学研究及发展 [J]. 科学通报,2006,15(1):1-7.
[13] Nakajima A, Hashimoto K, Watanabe T. Recent studies on super-hydrophobic films [J]. Monatshefte für Chemie, 2001, 132: 31-41.
[14] Young T. An essay on the cohesion of fluids [J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87.
[15] Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Industrial and Engineering Chemistry, 1936, 28(8): 988-994.
[16] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society, 1944, 40 (1-12): 546-551.
[17] Patankar N A. Transition between superhydrophobic states on rough surfaces [J]. Langmuir, 2004, 20: 7097-7102.
[18] Nakajima A, Fujishima A, Hashimoto K, et al. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of Aluminum Acetylacetonate [J]. Advanced Materials, 1999, 11(16): 1365-1368.
[19] Nakajima A, Abe K, Hashimoto K, et al. Preparation of hard super-hydrophobic films with visible light transmission [J]. Thin Solid Films, 2000, 376: 140-143.
[20] Nakajima A, Hashimoto K, Watanabe T. Transparent superhydrophobic thin film with self-cleaning properties [J]. Langmuir, 2000, 16: 7044-7047.
[21] Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces [J]. Langmuir, 2000, 16: 5754-5760.
[22] Ogawa K, Soga M, Takada Y, et al. Development of a transparent and ultrahydrophobic glass plate [J]. Japanese Journal of Applied Physics, 1993, 32: L614-L615.
[23] Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets [J]. Langmuir, 2002, 18(15): 5818-5822.
[24] Wolfram E, Faust R. Wetting, Spreading, and Adhesion [M]. London: Academic Press, 1978.
[25] Jin M, Feng X, Feng L, et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force [J]. Advanced Materials, 2005, 17: 1977-1981.
[26] Chen W, Fadeev A Y, Hsieh M C, et al. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples [J]. Langmuir, 1999, 15: 3395-3399.
[27] Shiu J Y, Kuo C W, Chen P, et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography [J]. Chemistry of Materials, 2004, 16(4): 561-564.
[28] Youngblood J P, McCarthy T J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma [J]. Macromolecules, 1999, 32: 6800-6806.
[29] Furmidge C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention [J]. Journal of Colloid Science, 1962, 17: 309-314.
[30] Nosonovsky M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces [J]. Langmuir, 2007, 23: 3157-3161.
[31] He B, Patankar N A, Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces [J]. Langmuir, 2003, 19: 4999-5003.
[32] Goodwyn P P, Souza E D, Fujisaki K, et al. Moulding technique demonstrates the contribution of surface geometry to the super-hydrophobic properties of the surface of a water strider [J]. Acta Biomaterialia, 2008, 4: 766-770.
[33] Swain P S, Lipowsky R. Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s laws [J]. Langmuir, 1998, 14: 6772-6780.
[34] ner D, McCarthy T J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability [J]. Langmuir, 2000, 16: 7777-7782.
[35] Hsieh C T, Chen J M, Kuo R R, et al. Influence of surface roughness on water-and oil-repellent surfaces coated with nanoparticles [J]. Applied Surface Science, 2005, 240: 318-326.
[36] Feng X, Feng L, Jin M, et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J]. Journal of the American Chemical Society, 2004, 126: 62-63.
[37] Bico J, Marzolin C, Quéré D. Pearl drops [J]. Europhysics Letters, 1999, 47(2): 220-226.
[38] Feng L, Li S, Li H, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers [J]. Angewandte Chemie International Edition, 2002, 41(7): 1221-1223.
[39] Li S, Li H, Wang X, et al. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes [J]. Journal of Physical Chemistry B, 2002, 106: 9274-9276.
[40] Chen A C, Peng X S, Koczkur K, et al. Super-hydrophobic tin oxide nanoflowers [J]. Chemical Communications, 2004: 1964-1965.
[41] Yabu H, Takebayashi M, Tanaka M, et al. Superhydrophobic and lipophobic properties of self-origanized honeycomb and pincushion structures [J]. Langmuir, 2005, 21: 3235-3237.
[42] Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface: a porous microsphere/ nanofiber composite film prepared by electrohydrodynamics [J]. Angewandte Chemie International Edition, 2004, 43: 4338-4341.
[43] Ming W, Wu D, van Benthem R, et al. Superhydrophobic films from raspberry-like particles [J]. Nano Letters, 2005, 5(11): 2298-2301.
[44] Fratzl P. Biomimetic materials research: what can we really learn from nature’s structural materials [J]. Journal of the Royal Society Interface, 2007, 4: 637-642.
[45] Hazlett R D. Fractal applications: wettability and contact angle [J]. Journal of Colloid and Interface Science, 1990, 137: 527-533.
[46] Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces [J]. Langmuir, 1996, 12(9): 2125-2127.
[47] Shibuichi S, Onda T, Satoh N, et al. Super water-repellent surfaces resulting from fractal structure [J]. Journal of Physical Chemistry, 1996, 100(50): 19512-19517.
[48] Tsori Y. Discontinuous liquid rise in capillaries with varying cross-sections [J]. Langmuir, 2006, 22: 8860-8863.
[49] Bartell F E, Shepard J W. The effect of surface roughness on apparent contact angles and on contact angle hysteresis. I. The system paraffin-water-air [J]. Journal of Physical Chemistry, 1953, 57(2): 211-215.
[50] Hozumi A, Takai O. Preparation of ultra water-repellent films by microwave plasma-enhanced CVD [J]. Thin Solid Films, 1997, 303: 222-225.
[51] Miller J D, Veeramasuneni S, Drelich J, et al. Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films [J]. Polymer Engineering and Science, 1996, 36(14): 1849-1855.
[52] Veeramasuneni S, Drelich J, Miller J D, et al. Hydrophobicity of ion-plate PTFE coatings [J]. Progress in Organic Coatings, 1997, 31: 265-270.
[53] Kijlstra J, Reihs K, Klamt A. Roughness and topology of ultra-hydrophobic surfaces [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206: 521-529.
[54] Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on -CF3 alignment [J]. Langmuir, 1999, 15: 4321-4323.
[55] Bico J, Thiele U, Quéré D. Wetting of textured surfaces [J]. Colloids and Surfaces A, 2002, 206: 41-46.
[56] Quéré D. Rough ideas on wetting [J]. Physica A, 2002, 313: 32-46.
[57] Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces [J]. Langmuir, 2003, 19: 1249-1253.
[58] Bhushan B, Nosonovsky M, Jung Y C. Towards optimization of patterned superhydrophobic surfaces [J]. Journal of the Royal Society Interface, 2007, 4: 643-648.
[59] Dorrer C, Rühe J. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces [J]. Langmuir, 2007, 23: 3820-3824.
[60] Jopp J, Grüll H, Yerushalmi-Rozen R. Wetting behavior of water droplets on hydrophobic microtextures of comparable size [J]. Langmuir, 2004, 20: 10015-10019.
[61] Gao N, Yan Y. Modeling superhydrophobic contact angles and wetting transition [J]. Journal of Bionic Engineering, 2009, 6: 335-340.
[62] Bahadur V, Garimella S V. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements [J]. Langmuir, 2009, 25, 4815-4820.
[63] Lafuma A, Quéré D. Superhydrophobic states [J]. Nature Materials, 2003, 2(7): 457 -460.
[64] Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces [J]. Langmuir, 2005, 21: 956-961.
[65] Ishino C, Okumura K, Quéré D. Wetting transitions on rough surfaces [J]. Europhysis Letters, 2004, 68(3): 419-425.
[66] Narhe R D, Beysens D A. Nucleation and growth on a superhydrophobic grooved surface [J]. Physical Review Letters, 2004, 93: 76103-76400.
[67] Wier K, McCarthy T J. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant [J]. Langmuir, 2006, 22(6): 2433-2436.
[68] Wang S T, Jiang L. Definition of superhydrophobic states [J]. Advanced Materials, 2007, 19: 3423-3424.
[69] Vrancken B J, Kusumaatmaja H, Hermans K, et al. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces [J]. Langmuir, 2010, 26: 3335-3341.
[70] Erbil H Y, Cansoy C E. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces [J]. Langmuir, 2009, 25: 14135-14145.
[71] Koch K, Bhushan B, Barthlott W. Diversity of structure, morphology and wetting of plant surfaces [J]. Soft Matter, 2008, 4: 1943-1963.
[72] Chen P P, Chen L, Han D, et al. Wetting behavior at micro-/nanoscales: direct imaging of a microscopic water/air/ solid three-phase [J]. Small, 2009, 5: 908-912.
[73] Wang J, Chen H, Sui T, et al. Investigation on hydrophobicity of lotus leaf: experiment and theory [J]. Plant Science, 2009, 176: 687-695.
[74] Zhang J H, Sheng X L, Jiang L. The dewetting properties of lotus leaves [J]. Langmuir, 2009, 25: 1371-1376.
[75] Liu M J, Zheng Y M, Zhai J, et al. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion [J]. Accounts of Chemical Research, 2010, 43: 368-377.
[76] Watson G S, Cribb B W, Watson J A. The role of micro/nano channel structuring in repelling water on cuticle arrays of the lacewing [J]. Journal of Structural Biology, 2010, 171: 44-51.
[77] Watson G S, Cribb B W, Watson J A. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider [J]. Acta Biomaterialia, 2010, 6: 4060-4064.
[78] Watson G S, Cribb B W, Watson J A. How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing [J]. ACS NANO, 2010, 4: 129-136.
[79] Holdgate M W. The wetting of insect cuticles by water [J]. Journal of Experimental Biology, 1955, 2: 591-617.
[80] Wagner T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures [J]. Acta Zoologica (Stockholm), 1996, 77(3): 213-225.
[81] Fang Y, Wang T Q, Sun G, et al. Ultrastructure of wing scales of Nymphalid butterflies (Lepidoptera: Nymphalidae) [J]. Acta Entomologica Sinica, 2007, 50(3): 313-317 (in Chinese). 房岩,王同庆,孙刚,等. 蛱蝶翅鳞片的超微结构观察 [J]. 昆虫学报,2007,50(3):313-317.
[82] Fang Y, Sun G, Wang T Q. Effect of non-smooth scale on surface wettability of butterfly wings [J]. Journal of Jilin University:Engineering and Technology Edition, 2007, 37(3): 582-586 (in Chinese). 房岩,孙刚,王同庆,等. 蝴蝶翅膀表面非光滑鳞片对润湿性的影响 [J]. 吉林大学学报:工学版,2007,37(3):582-586.
[83] Cong Q, Chen S C, Fang Y, et al. Super-hydrophobic characteristics of butterfly wing surface [J]. Journal of Bionic Engineering, 2004, 1(4): 249-255.
[84] Wu L Y, Han Z W, Qiu Z M, et al. The microstructures of butterfly wing scales in northeast of China [J]. Journal of Bionic Engineering, 2007, 4: 47-52.
[85] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings [J]. Soft Matter, 2007, 3: 178-182.
[86] Cassie A B D, Baxter S. Large contact angle of plant and animal surfaces [J]. Nature, 1945, 155: 21-22.
[87] 房岩,孙刚,王同庆,等. 蝴蝶翅膀表面非光滑形态疏水机理 [J]. 科学通报,2007,52(3):354-357.
[88] Saison T, Peroz C, Chauveau V, et al. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films [J]. Bioinspiration & Biomimetics, 2008, 3: 1-5.
[89] Kolle M, Salgard-Cunha P M, Scherer M R J, et al. Mimicking the colourful wing scale structure of the Papilio blumei butterfly [J]. Nature Nanotechnology, 2010, 101: 1-5.
[90] Dickinson M. How to walk on water [J]. Nature, 2003, 424: 621 -622.
[91] Gao X F, Jiang L. Water-repellent legs of water striders [J]. Nature, 2004, 432: 36.
[92] Feng X Q, Gao X F, Wu Z N, et al. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis [J]. Langmuir, 2007, 23: 4892 -4896.
[93] Sun M X, Watson G S, Zheng Y M, et al. Wetting properties on nanostructured surfaces of cicada wings [J]. Journal of Experimental Biology, 2009, 212: 3148-3155.
[94] Hong S H, Hwang J, Lee H. Replication of cicada wing’s nano-patterns by hot embossing and UV nanoimprinting [J]. Nanotechnology, 2009, 20: 1-5.
[95] Wu C W, Kong X Q. Micronanostructures of the scales on a mosquito’s legs and their role in weight support [J]. Physical Review E, 2007, 76, 017301-017304.
[96] Parker A R, Lawrence C R. Water capture by a desert beetle [J]. Nature, 2001, 414: 33-34.
[97] Budiansky S. Creatures of our own making [J]. Science, 2002, 298: 80-86.
[98] Summers A. Like water off a beetle's back [J]. Natural History, 2004, 2: 26-27.
[99] Lee D, Rubner M F, Cohen R E. All-nanoparticle thin-film coatings [J]. Nano Letters, 2006 6(10): 2305-2312.
[100] Garrod R P, Harris L G, Schofield W C E, et al. Mimicking a Stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces [J]. Langmuir, 2007, 23 (2): 689-693.
[101] Choi J H, Kim Y M, Park Y W, et al. Hydrophilic dots on hydrophobic nanopatterned surfaces as a flexible gas barrier [J]. Langmuir, 2009, 25 (12): 7156-7160.
[102] Cao G, Tian H. Synthesis of highly porous organic/inorganic hybrids by ambient pressure sol-gel processing [J]. Journal of Sol-gel Science and Technology, 1998, 13: 305-309.
[103] Shang H M, Wang Y, Limmer S J, et al. Optically transparent superhydrophobic silica-based films [J]. Thin Solid Films, 2005, 472: 37-43.
[104] Ma M, Hill R M, Lowery J L, et al. Electrospun poly (styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity [J]. Langmuir, 2005, 21: 5549-5554.
[105] Zhao B, Brittain W J. Synthesis of polystyrene brushes on silicate substrates via carbocationic polymerization from self-assembled monolayers [J]. Macromolecules, 2000, 33: 342-348.
[106] Erbil H Y, Demirel A L, Avci Y, et al. Transformation of a simple plastic into a superhydrophobic surface [J]. Science, 2003, 299: 1377-1380.
[107] Grego S W, Jarvis T W, Stoner B R, et al. Template-directed assembly on an ordered microsphere array [J]. Langmuir, 2005, 21(11): 4971-4975.
[108] Song X, Zhai J, Wang Y, et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties [J]. Journal of Physical Chemistry B, 2005, 109: 4048-4052.
[109] Jiang L. Nanostructured materials with superhydrophobic surface—from nature to biomimesis [J]. Chemical Industry and Engineering Progress, 2003, 22(12): 1258-1264 (in Chinese). 江雷. 从自然到仿生的超疏水纳米界面材料 [J]. 化工进展,2003,22(12):1258-1264.
[110] Wu Y J, Chen R, Li W. Research advances in bionics of insects [J]. Chinese Bulletin of Entomology, 2005, 42(1): 109-112 (in Chinese). 伍一军,陈瑞,李薇. 昆虫仿生 [J]. 昆虫知识,2005,42(1):109-112.
[111] Jiang L. Super-hydrophobic nanoscale interface materials: from natural to artificial [J]. Basic Science, 2005, 23(2): 4-8 (in Chinese). 江雷. 从自然到仿生的超疏水纳米界面材料 [J]. 基础科学,2005,23(2):4-8.
[112] Voise J, Casas J. The management of fluid and wave resistances by whirligig beetles [J]. Journal of the Royal Society Interface, 2010, 7: 343-352.
[113] Steve H. The wing of a butterfly [J]. Global Cosmetic Industry, 2002, 170(8): 32-35.
[114] 郑黎俊,乌学东,楼增,等. 表面微细结构制备超疏水表面 [J]. 科学通报,2004,49(17):1691-1699.
[115] 虞庆庆,王卫英,杨志贤,等. 东方龙虱鞘翅微结构及力学性能研究 [J]. 自然科学进展,2006,16(3):365-369.
[116] Yang Z X, Wang W Y, Yu Q Q, et al. Measurements on mechanical parameters and studies on microstructure of elytra in beetles [J]. Acta Materiae Compositae Sinica, 2007, 24(2):92-98 (in Chinese). 杨志贤,王卫英,虞庆庆,等. 四种甲虫鞘翅的力学参数测定及微结构观测 [J]. 复合材料学报,2007,24(2):92-98.
[117] Sun J R, Cheng H, Cong Q, et al. Bionic study on the dung beetle Copris ochus Motschulsky for reduction of soil adhesion [J]. Acta Biophysica Sinica, 2001, 17(4): 785-793 (in Chinese). 孙久荣,程红,丛茜,等. 蜣螂( Copris ochus Motschulsky)减粘脱附的仿生学研究 [J]. 生物物理学报,2001,17(4):785-793.
[118] Cheng H, Sun J R, Li J Q, et al. Structure of the integumentary surface of the dung beetle Copris ochus Motschulsky and its relation to non-adherence of substrate particles [J]. Acta Entomologica Sinica, 2002, 45(2): 175-181 (in Chinese). 程红,孙久荣,李建桥,等. 臭蜣螂体壁表面结构及其减粘脱附功能的关系 [J]. 昆虫学报,2002,45(2):175-181.
[119] Ren L Q, Deng S Q, Wang J C, et al. Design principles of the non-smooth surface of bionic plow moldboard [J]. Journal of Bionic Engineering, 2004, 1: 9-19.
[120] Stoddart P R, Cadusch P J, Boyce T M, et al. Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings [J]. Nanotechnology, 2006, 17: 680-686.
[121] Watson J A, Myhra S, Watson G S. Tunable natural nano-arrays: controlling surface properties and light reflectance [J]. Proceedings of the SPIE, 2006, 6037: 375-383.
[122] Watson G S, Myhra S, Cribb B W, et al. Putative functions and functional efficiency of ordered cuticular nanoarrays on insect wings [J]. Biophysical Journal, 2008, 94: 3352-3360.
[123] Song F, Lee K L, Soh A K, et al. Experimental studies of the material properties of the forewing of cicada (Homoptera, Cicadidae) [J]. Journal of Experimental Biology, 2004, 207: 3035-3042.
[124] Fang Y, Sun G, Cong Q, et al. Effects of methanol on wettability of the non-smooth surface on butterfly wing [J]. Journal of Bionic Engineering, 2008, 5: 127-133.
|