[1] Sun J, Boyd S, Xiao L, et al. The fastest mixing Markov process on a graph and a connection to a maximum variance unfolding problem [J]. SIAM Review, 2006, 48(4): 681-699.
[2] Boyd S, Diaconis P, Xiao L. Fastest mixing Markov chain on a graph [J]. SIAM Review, 2004, 46(4): 667-689.
[3] Godsil C, Royle G. Algebraic graph theory [M]. New York: Springer-Verlag, 2001.
[4] Brémaud P. Markov chains: Gibbs fields, monte carlo simulation, and queues [M]. New York: Springer-Verlag, 1999.
[5] Fiedler M. Absolute algebraic connectivity of trees [J]. Linear and Multilinear Algebra, 1990, 26(1-2): 85-106.
[6] Fiedler M. Some minimax problems for graphs [J]. Discrete Math, 1993, 121(1-3): 65-74.
[7] Boyd S, Diaconis P, Parrilo P, et al. Fastest mxing Markov chain on graphs with symmetries [J]. SIAM J Optim, 2009, 20(2): 792-819.
[8] Boyd S, Diaconis P, Sun J, et al. Fastest mixing Markov chain on a path [J]. Amer Math Monthly, 2006, 113(1): 70-74.
[9] Roch S. Bounding fastest mixing [J]. Electronic Communications in Probability, 2005, 10: 282-296.
[10] Xiao L, Boyd S. Fast linear iterations for distributed averaging [J]. Systems and Control Letters, 2004, 53(1): 65-78.
[11] Xiao L, Boyd S. Optimal scaling of a gradient method for distributed resource allocation [J]. Journal of Optimization Theory and Applications, 2006, 129(3): 469-488.
[12] de Klerk E, Pasechnik D V, Schrijver A. Reduction of symmetric semidefinite programs using the regular *-representation [J]. Math Program, 2007, 109(2): 613-624.
|