[1] Suman K P, Jawahar C V. Analysis of relevance feedback in content based image retrieval[C]//9th International Conference on Control, Automation, Robotics and Vision. Singapore, 2006:1-6.[2] Cristianini N,Shawe Taylor J.An introduction to support vector machine[M].New York:Cambridge University Press,2000.[3] Jiang N N, Qi M, Hao C Y. A SVM based relevance feedback algorithm for image retrieval[J]. Computer Simulation, 2009, 26(1):219-221(in Chinese). 姜楠楠, 齐敏, 郝重阳. 一种基于SVM的相关反馈图像检索算法[J]. 计算机仿真, 2009, 26(1):219-221.[4] Zhou J X, Gao K, Li J T, et al. Efficient relevance feedback scheme based on SVM in image retrieval[J]. Journal of Computer-aided Design& Computer Graphics, 2007, 19(4):535-540(in Chinese). 周建新, 高科, 李锦涛,等. 图像检索中一种有效的SVM 相关反馈算法[J]. 计算机辅助设计与图形学学报, 2007, 19(4): 535-540.[5] Seo K K. An application of one-class support vector machines in content-based image retrieval[J]. Expert Systems with Applications, 2007, 33(2): 491-498.[6] Jiang W, Er G H, Dai Q H. Boost SVM active learning for content-based image retrieval[C]//Conference Record of the Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, United States, 2003: 1585-1589.[7] Hoi S C H, Lyu M R, Jin R. Integrating user feedback log into relevance feedback by coupled SVM for content-based image retrieval[C]//International Workshop on Biomedical Data Engineering. Tokyo, Japan, 2005: 1177.[8] Yang Y, Newsam S. Geographic image retrieval using local invariant features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2):818-832.[9] Cheng Q M,Yang C J,Chen F X,et al.Application of M-band wavelet theory to texture analysis in content-based aerial image retrieval[C]//2004 IEEE International Geoscience and Remote Sensing Symposium.Anchorage,AK,2004:2163-2165.[10] Liu L, Kuang G Y. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4):622-635(in Chinese). 刘丽, 匡纲要.图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009,14(4): 622-635.[11] Yue J, Li Z B, Liu L, et al. Content-based image retrieval using color and texture fused features[J]. Mathematical and Computer Modelling, 2011, 54(3/4):1121-1127.[12] Balamurugan V, Anandha Kumar P. An integrated color and texture feature based framework for content based image retrieval using 2D Wavelet Transform[C]//International Conference on Computing, Communication and Networking. St Thomas, VI, 2008: 1-16.[13] Haralick R M, Shanmugam K, Dinstein I. Texture features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(6): 610-621.[14] Du P J, Tang H, Fang T. Several issues of content-based remote sensing image retrieval[J]. Journal of China University of Mining & Technology, 2005,34(3):270-273(in Chinese). 杜培军,唐宏,方涛. 基于内容的遥感影像检索若干问题的研究[J]. 中国矿业大学学报,2005,34(3):270-273.[15] Zha Y, Ni S X, Yang S. An effective approach to automatically extract urban land use from TM image[J]. Journal of Remote Sensing, 2003, 7(1):37-41(in Chinese). 查勇,倪绍祥,杨山.一种利用TM图象自动提取城镇用地信息的有效方法[J].遥感学报, 2003, 7(1):37-41.[16] 周成虎,骆剑承,杨晓梅,等.遥感影像地学理解与分析[M].北京:科学出版社,1999.[17] Vapnik V N. Statistical learning theory[M]. New York: Wiley, 1998.[18] Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1999.[19] Zhang L, Lin F Z, Zhang B. Support vector machine learing for image retrieval[C]//2001 International Conference on Image Processing. Thessaloniki, 2001, 2:721-724.[20] Wang X J, Yang L L. Application of SVM relevance feedback algorithms in image retrieval[C]//International Symposium on Information Science and Engineering. Shanghai, 2008: 210-213.[21] Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification [R]. Taiwan: Department of Computer Science and Information Engineering, National Taiwan University, 2004. |