[1] Taylor S J. Sample path properties of a transient stable process [J]. J Math Mech, 1967, 16: 1229-1246.[2] Pruitt W E, Taylor S J. Sample path properties of processes with stable components [J]. Z Wahrsch Verw Gebiete, 1969, 12: 267-289.[3] Port S C, Stone C J. Infinitely divisible processes and their potential theory Ⅰ,Ⅱ[J]. Ann Inst Fourier, 1971, 21(2): 157-275 and 1971, 21(4): 176-265.[4] Pruitt W E, Taylor S J. Hausdorff measure properties of the asymmetric Cauchy processes [J]. Ann of Probab, 1977, 5: 608-615.[5] Jain N, Pruitt W E. The correct measure function for the graph of a transient stable process [J]. Z Wahrsch verw Geb, 1968, 9: 131-138.[6] Taylor S J. The measure theory of random fractals [J]. Math Proc Camb Philos Soc, 1986, 100: 383-406.[7] Xiao Y. Random fractals and Markov processes[C]//Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot Proc Symposia Pure Math. 2004, 72: 261-338.[8] Besicovitch A S, Moran P A. The measure of product and cylinder sets [J]. J Lond Math Soc, 1945, 20: 110-120.[9] Hu X Y. Some fractal sets determined by stable processes [J]. Probab Theory Related Fields, 1994, 100: 205-225.[10] 吴娟. 两条相互独立的非对称Cauchy过程轨道的乘积集的分形性质[J].数学杂志, 2000, 20: 63-70.[11] Hou Y Y, Zhao M Z. Product fractal sets determined by stable processes [J]. Bulletin of the Australian Mathematical Society, 2009, 79: 201-212.[12] Ehm W. Sample function properties of the multi-parameter stable processes [J]. Z Wahrsch verw Geb, 1981, 56: 195-228.[13] 石海华. 多参数随机过程的样本轨道性质[D]. 北京:中国科学院大学, 2012.[14] Falconer K J. Fractal geometry: mathematical foundations and applications [M]. Wiley, 2007.[15] Rogers C A, Taylor S J. Functions continuous and singular with respect to a Hausdorff measure [J]. Mathematika, 1961, 8: 1-31. |