[1] Wikipedia.Facebook[EB/OL].(2012-06-05) . http://en.wikipedia.org/wiki/Facebook.[2] Stein T, Chen E, Mangla K. Facebook immune system[C]//Proceedings of the 4th Workshop on Social Network Systems. Salzburg, Austria, 2011.[3] Yang Z, Wilson C, Wang X, et al. Uncovering social network sybils in the wild[C]//Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference. Berlin, Germany, 2011:259-268.[4] Bilge L, Strufe T, Balzarotti D, et al. Automated ldentity theft attacks on social networks[C]//Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009:551-560.[5] Mondal M, Viswanath B, Clement A, et al. Limiting arge-scale crawls of social networking sites[C]//Proceedings of the ACM SIGCOMM 2011 Conference. New York: ACM, 2011:398-399.[6] Philip WLF. Preventing Sybil attacks by privilege attenuation: A design principle for social network systems[C]//Security and Privacy (SP), 2011 IEEE Symposium on. Berkeley, CA, 2011:263-278.[7] Zha D, Jing J, Kang L. Mitigating the malicious trust expansion in social network service[J]. Information Security, Practice and Experience, 2010(6047):264-275.[8] Matt Jurek. Google explorer +1 button to influence search results[EB/OL]. (2011-08-29) . http://tinyurl.com/7g927oy.[9] Gao H, Hu J, Wilson C, et al. Detecting and characterizing social spam campaigns[C]//Proceedings of the 10th ACM SIGCOMM. AFairfax, VA, USA, 2010:35-47.[10] Thomas K, Grier C, Paxson V, et al. Suspended accounts in retrospect: An analysis of twitter spam[C]//Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference. Berlin, Germany, 2011:243-258.[11] Yu H, Kaminsky M, Gibbons P B, et al. SybilGuard: defending against sybil attacks via social networks[C]//Proceedings of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. Pisa, Italy, 2006:267-278.[12] Yu H, Gibbons P, Kaminsky M, et al. SybilLimit: A near-optimal social metwork defense against sybil attacks[C]//Security and Privacy, IEEE Symposium on. 2008:3-17.[13] Danezis G, Mittal P. SybilInfer: detecting SybilNodes using social networks[C]//NDSS. 2009.[14] Tran N, Min B, Li J, et al. Sybil-resilient online content voting[C]//NSDI. 2009.[15] Tran N, Li J, Subramanian, et al. Optimal Sybil-resilient node admission control[C]//INFOCOM, 2011 Proceedings IEEE. 2011:3218-3226.[16] Viswanath B, Post A, Gummadi K P. An analysis of social network-based Sybil defenses[C]//Proceedings of the ACM SIGCOMM 2010 Conference. New Delhi, India, 2010:363-374.[17] Gao H, Hu J, Wilson C, et al. Detecting and characterizing social spam campaigns[C]//Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. Melbourne, Australia, 2010:35-47.[18] Antonio L, Cliff E, Reynold X. Detecting spam on social networking site: related work[EB/OL]. (2012-03-14) . http://bid.berkeley.edu/cs294-1-spring12/images/b/b9/Spam-related-work.pdf.[19] Boshmaf Y, Muslukhov I, Beznosov K, et al. The socialbot network: when bots socialize for fame and money[C]//Proceedings of the 27th Annual Computer Security Applications Conferencetions Conference. Orlando, FL, USA, 2011:93-102.[20] Stringhini G, Kruegel C, Vigna G, et al. Detecting spammers on social networks[C]//Proceedings of the 26th Annual Computer Security Applications Conference. Austin, TX, USA, 2010:1-9.[21] Cao Q, Yang X W. SybilFence: improving social-graph-based sybil defenses with user negative feedback[EB/OL]. (2013-04-13) .[2013-05-28]http://arxiv.org/abs/1304.3819.[22] Cao Q, Sirivianos M, Yang X, et al. Aiding the detection of fake accounts in large scale social online services[C]//USENIX Networked Systems Design and Implementation. 2012.[23] Ahn Y, Han S, Kwak H, et al. Analysis of topological characteristics of huge online social networking services[C]//Proceedings of the 16th International Conference on World Wide Web. Banff, AB, Canada, 2007:835-844.[24] Fielding R T. Architectural styles and the design of network-based software architectures[D].Irvine: University of California, Irvine, 2000. |