[1] Dunwoody M J. K2(Zπ) for p a group of order two or three[J]. J London Math Soc, 1975,11(2): 481-490.
[2] Stein M R. Excision and K2 of group rings[J]. J Pure Appl Algebra,1980,18: 213-224.
[3] Dennis R K, Keating M E, Stein M R. Lower bounds for the order of K2(ZG) and Wh2(G)[J]. Math Ann, 1976,223:97-103. (continued on page 206)
[4] Rosenberg J. Algebraic K-theory and its applications[M]. Grad Texts in math. New York: Springer-Verlag, 1994: 147.
[5] Alperin R C, Dennis R K, Oliver R, et al. SK1 of finite abelian groups. II[J]. Invent Math, 1987,87:253-302.
[6] Gao Y B, Tang G P. K2 of finite abelian group algebras[J]. J Pure Appl Algebra,2009, 213:1 201-1 207.
[7] Milnor J. Introduction to algebraic K-theory[J]. Annals of math Studies, Princeton Univ Press, Princeton, 1971:72.
[8] Magurn B A. Explicit K2 of some finite group rings[J]. J Pure Appl Algebra,2007, 209: 801-811.
[9] Low R M. On the units of the integral group ring Z [G×Gp][J]. Journal of Algebra and its Applications, 2008,7(3):393-403.
[10] Guin W D, Loday J L. Obstruction a lexcision en K-theorie algebrique[J]. Lect Notes Math, 1981,854:179-216.
[11] Akhmet'ev P M. K2 for the simplest integral group rings and topological applications[J]. Sbornik:Mathematics. 2003,194:1, 21-29. |