[1] Zhang W H, Wei C H, Yan B, et al. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants[J]. Environmental Science and Pollution Research, 2013, 20:6 418-6 432.
[2] Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems[J]. Current Opinion in Biotechnology, 2002, 13:218-227.
[3] Werner J, Knights D, Garcia M L, et al. Bacterial community structures are unique and resilient in full-scale bioenergy systems[J]. Proceeding of the National Academy of Sciences USA, 2011, 108:4 158-4 163.
[4] Jia R, Zhang Y, Zhang Q, et al. Isolation and degradation kinetics of the quinoline degradation bacterium strains from coking wastewater[J]. Advanced Materials Research, 2014, 864-867: 209-212.
[5] 张玉秀, 蒙小俊, 柴团耀. 苯酚降解菌红球菌(Rhodococcus sp.)P1的鉴定及其在焦化废水中的应用[J]. 微生物学报,2013, 53(10):1 117-1 124.
[6] Bacosa H P, Inoue C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan[J]. Journal of Hazardous Materials, 2015, 11(283):689-697.
[7] Kim B C, Kim S, Shin T, et al. Comparison of the bacterial communities in anaerobic, anoxic, and oxic chambers of a pilot A(2)O process using pyrosequencing analysis[J]. Current Microbiol, 2013, 66(6):555-565.
[8] Gómez-Silván C, Vílchez-Vargas R, Arévalo J, et al. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor[J]. Bioresource Technology, 2014, 169:126-133.
[9] Zhang T, Shao M F, Ye L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. ISME Journal, 2012, 6(6):1 137-1 147.
[10] Pedros-Alio C. Marine microbial diversity: can it be determined[J]. Trends in Microbiology, 2006, 14(6):257-263.
[11] Kim T S, Jeong J Y, Wells G F, et al. General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor[J]. Applied Microbiology and Biotechnology, 2013, 97(4):1 755-1 765.
[12] Ibarbalz F M, Figuerola E L, Erijman L. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks[J]. Water Research, 2013, 47(11):3 854-3 864.
[13] Van der Gast C J, Ager D, Lilley A K. Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors[J]. Environmental Microbiology, 2008, 10(6):1 411-1 418.
[14] Desta A F, Assefa F, Leta S, et al. Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia[J]. PLOS One, 2014, 26:9(12):e115576.
[15] Burns A S, Pugh C W, Segid Y T, et al. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage[J]. Biodegradation, 2012, 23: 415-429.
[16] Zhang L, Sun Y, Guo D, et al. Molecular diversity of bacterial community of dye wastewater in an anaerobic sequencing batch reactor[J]. African Journal of Microbiology Research, 2012, 6:6 444-6 453.
[17] Bai Y, Sun Q, Sun R, et al. Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters[J]. Environmental Science Technology, 2011, 45(5):1 940-1 948.
[18] Zhang J, Wen D, Zhao C, et al. Bioaugmentation accelerates the shift of bacterial community structure against shock load: a case study of coking wastewater treatment by zeolite-sequencing batch reactor[J]. Applied Microbiology and Biotechnology, 2014, 98(2):863-873.
[19] Zhu X, Tian J, Liu C, et al. Composition and dynamics of microbial community in a zeolite biofilter-membrane bioreactor treating coking wastewater[J]. Applied Microbiology and Biotechnology, 2013, 97(19):8 767-8 775.
[20] Kim Y M, Lee D S, Park C, et al. Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process[J]. Water Research, 2011, 45(3):1 267-1 279.
[21] Park S, Yu J, Byun I, et al. Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions[J]. Bioresource Technology, 2011, 102(15):7 265-7 271.
[22] Bai Y H, Sun Q H, Zhao C, et al. Aerobic degradation of pyridine by a new bacterial strain, Shinella zoogloeoides BC026[J]. Journal of Industrial Microbiology and Biotechnology, 2009, 36(11):1 391-1 400.
[23] Ma Q, Qu Y, Shen W, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179:436-443.
[24] Beller H R, Chain P S G, Letain T E, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans[J]. Journal of Bacteriology, 2006, 188 (4):1 473-1 488.
[25] Felfoldi T, Székely A J, Gorál R, et al. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent[J]. Bioresource Technology, 2010, 101 (10):3 406-3 414.
[26] Chen Q, Ni J. Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria[J]. Journal of Industriali Microbiology and Biotechnology, 2011, 38 (9):1 305-1 310.
[27] Thomsen T R, Kong Y, Nielsen P H. Ecophysiology of abundant denitrifying bacteria in activated sludge[J]. FEMS Microbiology Ecology, 2007, 60 (3):370-382.
[28] Mao Y, Zhang X, Xia X, et al. Versatile aromatic compound-degrading capacity and microdiversity of Thauera strains isolated from a coking wastewater treatment bioreactor[J]. Journal of Industriali Microbiology and Biotechnology, 2010, 37(9):927-934.
[29] Zhao Y, Huang J, Zhao H, et al. Microbial community and N removal of aerobic granular sludge at high COD and N loading rates[J]. Bioresource Technology, 2013, 143:439-446.
[30] 王蕾,聂麦茜,杨学福,等. 高效芘降解细菌的筛选、鉴定及其基本特性研究[J]. 西安建筑科技大学学报:自然科学版, 2011, 43(6):859-863,881.
[31] 伍凤姬,张梦露,郭楚玲,等. 菌源对多环芳烃降解菌的筛选及降解性能的影响[J]. 环境工程学报, 2014, 8(8):3 511-3 518.
[32] 唐玉斌,王晓朝,陈芳艳,等. 一株芴降解菌的分离鉴定及其对多环芳烃的降解广谱性研究[J]. 环境工程学报, 2011,5(2):467-471.
[33] 唐玉斌,马姗姗,王晓朝,等. 一株芘的高效降解菌的选育及其降解性能研究[J]. 环境工程学报,2011,5(1):48-54.
[34] Debruyn J M, Chewning C S, Sayler G S. Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments[J]. Environmental Science and Technology, 2007, 41(15):5 426-5 432.
[35] Kim S J, Kweon O, Jones R C, et al. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology[J]. Journal Bacteriology, 2007, 189(2):464-472.
[36] Ghosh I, Jasmine J, Mukherji S. Biodegradation of pyrene by a Pseudomonas aeruginosa strain RS1 isolated from refinery sludge[J]. Bioresource Technology, 2014, 166:548-558.
[37] Ma J, Xu L, Jia L. Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge[J]. Bioresource Technology, 2013, 140:15-21.
[38] Lyu Y, Zheng W, Zheng T, et al. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1[J]. PLOS One, 2014, 9(7):e101438.
[39] Gallego S, Vila J, Tauler M, et al. Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium[J]. Biodegradation, 2014, 25(4):543-556.
[40] Ding G C, Heuer H, Zühlke S, et al. Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system[J]. Applied Microbiology and Biotechnology, 2010, 76(14):4 765-4 771.
[41] Singh S N, Kumari B, Upadhyay S K, et al. Bacterial degradation of pyrene in minimal salt medium mediated by catechol dioxygenases: enzyme purification and molecular size determination[J]. Bioresource Technology, 2013, 133:293-300.
[42] 杨轩,张威,李师翁,等. 多环芳烃降解菌的分离鉴定及其生理特性研究[J]. 环境科学学报,2012,32(5):1 033-1 040.
[43] Liang L, Song X, Kong J, et al. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp[J]. Biodegradation, 2014, 25(6):825-833.
[44] Morris B E, Gissibl A, Kümmel S, Richnow H H, Boll M. A PCR-based assay for the detection of anaerobic naphthalene degradation[J]. FEMS Microbiology Letter, 2014, 354(1):55-59. |