[1] 王献孚. 空化泡和超空化泡流动理论及应用[M]. 北京:国防工业出版社,2009.
[2] 李贝贝,张宏超,倪晓武,等. 不同环境压强下激光空泡溃灭射流的实验研究[J]. 激光技术,2012,36 (6):749-753.
[3] 马建旭,王立鼎,吴一辉. 微电子机械系统在生物医学领域中的应用[J]. 光学精密工程,1996,4(1):1-6.
[4] 杨拥军. 划时代的MEMS加工技术[J]. 国防制造技术,2009,10 (5):36-42.
[5] Mishra C, Peles Y. Cavitation in flow through a micro-orifice inside a silicon microchannel[J]. Physics of Fluids, 2005, 17 (1): 151-155.
[6] Schneider B, Ko?ar A, Kuo C J, et al. Cavitation enhanced heat transfer in microchannels[J]. Journal of Heat Transfer, 2006, 128 (12): 1 293-1 301.
[7] Mishra C, Peles Y. Flow Visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel[J]. Physics of Fluids, 2005, 17 (11): 3 602-3 614.
[8] Mishra C, Peles Y. An experimental investigation of hydrodynamic cavitation in micro-venturis[J]. Physics of Fluids, 2006, 18(10): 3 603-3 605.
[9] Fogg D W, Goodson K E. Bubble-induced water hammer and cavitation in microchannel flow boiling[J]. Journal of Heat Transfer, 2009, 131 (12): 315-320.
[10] Hickel S, Mihatsch M, Schmidt S J. Implicit large eddy simulation of cavitation in micro channel flows[J]. Eprint Arxiv, 2014, 132(1): 743-750.
[11] Rooze J, André M, van der Gulik G S, et al. Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers[J]. Microfluidics and Nanofluidics, 2012, 12(1-4): 499-508.
[12] Schnerr G H, Saver J. Physical and numerical modeling of unsteady cativation dynamics[C]//Fourth International Conference on Multiphase Flow. New Orleans, Louisiana, USA, 2001.
[13] Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1 299-1 310.
[14] 孙润鹏,朱卫兵,徐凌志,等. 应用Transition k-kl-ω转捩模型对内冷叶片气热耦合的数值模拟[J]. 推进技术,2012,33(2):274-282.
[15] Liu B, Cai J, Huai X L. Experimental study on heat transfer with cavitating flow in copper-based microchannels[C]// The Heat Transfer Symposium 2014. Beijing, China, 2014. |