[1] Olver P J, Rosenau P.Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support[J].Physical Review E, 1996, 53: 1 900-1 906.
[2] Constantin A, Ivanov R I.On an integrable two-component Camassa-Holm shallow water system[J].Physics Letters A, 2008, 372: 7 129-7 132.
[3] Camassa R, Holm D.An integrable shallow water equation with peaked solitons[J].Phys Rev Lett, 1993, 71: 1 661-1 664.
[4] Constantin A, Lannes D.The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[J].Arch Ration Mech Anal, 2009, 192: 165-186.
[5] Dullin H R, Gottwald G A, Holm D D.An integrable shallow water equation with linear and nonlinear dispersion[J].Phys Rev Lett, 2001, 87: 4 501-4 504.
[6] Ionescu-Krus D.Variational derivation of the Camassa-Holm shallow water equation[J].J Nonlinear Math Phys, 2007, 14: 303-312.
[7] Ivanov R I.Water waves and integrability[J].Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 2007, 365: 2 267-2 280.
[8] Johnson R S.Camassa-Holm, Korteweg-de Vries and related models for water waves[J].J Fluid Mech, 2002, 457: 63-82.
[9] Constantin A, Strauss W A.Stability of a class of solitary waves in compressible elastic rods[J].Phys Lett A, 2000, 270: 140-148.
[10] Dai H H.Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod[J].Acta Mech, 1998, 127: 193-207.
[11] Constantin A.The Hamiltonian structure of the Camassa-Holm equation[J].Expo Math, 1997, 15: 53-85.
[12] Fokas A, Fuchssteiner B.Symplectic structures, their Bäcklund transformation and hereditary symmetries[J].Phys D, 1981, 4: 47-66.
[13] Constantin A.On the scattering problem for the Camassa-Holm equation[J].Proc R Soc Lond Ser A Math Phys Eng Sci, 2001, 457: 953-970.
[14] Lakshmanan M.Tsunami and nonlinear waves[M].Berlin: Springer, 2007.
[15] Constantin A, Johnson R S.Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis[J].Fluid Dynam Res, 2008, 4: 175-211.
[16] Constantin A, Escher J.Global existence and blow-up for a shallow water equation[J].Ann Sc Norm Super Pisa Cl Sci, 1998, 26: 303-328.
[17] Constantin A, Escher J.Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation[J].Comm Pure Appl Math, 1998, 51: 475-504.
[18] Danchin R.A few remarks on the Camassa-Holm equation[J].Differential Integral Equations, 2001, 14: 953-988.
[19] Escher J, Yin Z.Initial boundary value problems of the Camassa-Holm equation[J].Comm Partial Differential Equations, 2008, 33: 377-395.
[20] Escher J, Yin Z.Initial boundary value problems for nonlinear dispersive wave equations[J].J Funct Anal, 2009, 25: 479-508.
[21] Constantin A.Existence of permanent and breaking waves for a shallow water equation: a geometric approach[J].Ann Inst Fourier (Grenoble), 2000, 50: 321-362.
[22] Constantin A, Escher J.On the blow-up rate and the blow-up of breaking waves for a shallow water equation[J].Math Z, 2000, 233: 75-91.
[23] Escher J, Lechtenfeld O, Yin Z.Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation[J].Discrete Contin Dyn Syst Ser A, 2007, 19: 493-513.
[24] Olver P J.Grauate texts in mathematics[M].New York: Springer, 1993.
[25] Bluman G, Anco S.Symmetry and integration methods for differential equations[M].New York: Springer-Verlag, 2002.
[26] Sinkala W, Leach P, Hara J O.Invariance properties of a general-pricing equation[J].J Differential Equations, 2008, 244: 2 820-2 835.
[27] Craddock M, Lennox K.Lie group symmetries as integral transforms of fundamental solutions[J].J Differential Equations, 2007, 232: 652-674.
[28] Liu H, Li J, Liu L.Conservation law classification and integrability of generalized nonlinear second-order equation[J].Commun Theor Phys, 2011, 56: 987-991.
[29] Asmar N H.Partial differential equations with fourier series and boundary value problems[M].2nd ed.Beijing: China Machine Press, 2005.
[30] Rudin W.Principles of mathematical analysis[M].Beijing: China Machine Press, 2004. |