[1] 王明星. 大气化学[M]. 2版. 北京:气象出版社,1999.
[2] 石广玉,王标,赵剑琦,等. 大气气溶胶的辐射与气候效应[J]. 大气科学,2008,32(4):826-840.
[3] Després V R, Huffman J A, Burrows S M, et al. Primary biological aerosol particles in the atmosphere:a review[J]. Tellus B:Chemical and Physical Meteorology, 2012, 64(1):1-58.
[4] 祁建华,高会旺. 生物气溶胶研究进展:环境与气候效应[J]. 生态环境,2006,15(4):854-861.
[5] Ehrenberg C G. Neue Beobachlungen über blutartige Erscheinungen in Aegypten, Arabien und Sibirien, nebst einer Uebersicht und Kritik der früher bekannnten[J]. Annalen der Physik, 1830, 94(4):477-514.
[6] Pasteur L. Expériences relatives aux generations dites spontanées[J]. Comptes Rendus de l'Académie des Sciences, 1860, 50:303-307.
[7] Winslow C E A. A new method of enumerating bacteria in air[J]. Science, 1908, 28(705):28-31.
[8] Soulage G. Les noyaux de congélation de l'atmosphère[J]. Annales De Geophysique, 1957, 13:103-167.
[9] Franc G D, Demott P J. Cloud activation characteristics of airborne Erwinia carotovora cells[J]. Journal of Applied Meteorology, 1998, 37(37):1293-1300.
[10] Vali G, Christensen M, Fresh R W, et al. Biogenic ice nuclei. Part Ⅱ:Bacterial sources[J]. Journal of the Atmospheric Sciences, 1976, 33(8):1565-1570.
[11] 金梓良. 电影院观众厅空气中细菌含量的变动规律及其影响因素[J]. 中国公共卫生,1985,4(1):24-26.
[12] 何启芬. 贵阳市冬季居民室内空气微生物调查[J]. 环境与健康杂志,1988,5(4):33-35.
[13] 车凤翔,胡庆轩,徐秀芝,等. 两种空气微生物采样器采样方法的研究[J]. 中国消毒学杂志,1987,4(4):205-208.
[14] 陈皓文,宋庆云. 国际五城市空气微生物概况[J]. 海洋科学进展,1993,11(1):50-57.
[15] 陈皓文. 北海市空气微生物含量时空分布[J]. 广西科学,1998,5(2):83-86.
[16] 陈皓文. 庐山旅游区空气微生物污染调查[J]. 环境监测管理与技术,1996,8(2):21-23.
[17] 方治国,欧阳志云,胡利锋,等. 城市生态系统空气微生物群落研究进展[J]. 生态学报,2004,24(2):315-322.
[18] 张敬党,高丹,连英姿,等. 71所医院空气微生物监测结果分析[J]. 中国卫生检验杂志,2004,14(3):321-322.
[19] 刘苗苗,祁建华,高冬梅,等. 青岛近海秋季生物气溶胶分布特征[J]. 生态环境学报,2008,17(2):565-571.
[20] Fu P, Kawamura K, Okuzawa K, et al. Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain[J]. Journal of Geophysical Research, 2008, 113(19):1429-1443.
[21] 高敏,仇天雷,贾瑞志,等. 北京雾霾天气生物气溶胶浓度和粒径特征[J]. 环境科学,2014,35(12):4415-4421.
[22] 胡凌飞,张柯,王洪宝,等. 北京雾霾天大气颗粒物中微生物气溶胶的浓度及粒谱特征[J]. 环境科学,2015,36(9):3144-3149.
[23] 张小曳. 中国大气气溶胶及其气候效应的研究[J]. 地球科学进展,2007,22(1):12-16.
[24] Lindemann J, Upper C D. Aerial dispersal of epiphytic bacteria over bean plants[J]. Applied and Environmental Microbiology, 1985, 50(5):1229-1232.
[25] Pratt K A, DeMott P J, French J R, et al. In situ detection of biological particles in cloud ice-crystals[J]. Nature Geoscience, 2009, 2(6):398-401.
[26] Rogers L A, Meier F C. The collection of microorganisms above 36000 feet[J]. National Geographic Society, 1936, 2:146-151.
[27] Imshenetsky A A, Lysenko S V, Kazakov G A. Upper boundary of the biosphere[J]. Applied and Environmental Microbiology, 1978, 35(1):1-5.
[28] Maki L R, Galyan E L, Chang-Chien M M, et al. Ice nucleation induced by Pseudomonas syringae[J]. Applied Microbiology, 1974, 28(3):456-459.
[29] Jaenicke R. Abundance of cellular material and proteins in the atmosphere[J]. Science, 2005, 308(5718):73.
[30] Hoose C, Möhler O. Heterogeneous ice nucleation on atmospheric aerosols:a review of results from laboratory experiments[J]. Atmospheric Chemistry and Physics, 2012, 12(20):9817-9854.
[31] Moffet B, Getti G, Begg H S, et al. Ubiquity of ice nucleation in lichen-possible atmospheric implications[J]. Lindbergia, 2015, 38:39-43.
[32] 杜睿,王亚玲,梁宗敏. 细菌气溶胶在大气冰核核化过程中作用的研究进展[J]. 中国环境科学, 2013, 33(1):30-42.
[33] Maki L R, Willoughby K J. Bacteria as biogenic sources of freezing nuclei[J]. Journal of Applied Meteorology, 1978, 17(7):1049-1053.
[34] Sands D C, Langhans V E, Scharen A L, et al. The association between bacteria and rain and possible resultant meteorological implications[J]. Journal of the Hungariun Meteorological Service, 1982, 86(2):148-152.
[35] Constantinidou H A, Hirano S S, Baker L S, et al. Atmospheric dispersal of ice nucleation-active bacteria:the role of rain[J]. Phytopathology, 1990, 80(10):934-937.
[36] Caldelari I, Mann S, Crooks C, et al. The Tat pathway of the plant pathogen Pseudomonas syringae is required for optimal virulence[J]. Molecular Plant-microbe Interactions, 2006, 19(2):200-212.
[37] Lindemann J, Constantinidou H A, Barchet W R, et al. Plants as sources of airborne bacteria, including ice nucleation-active bacteria[J]. Applied and Environmental Microbiology, 1982, 44(5):1059-1063.
[38] Ahern H E, Walsh K A, Hill T C J, et al. Fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfactants but do not cause ice nucleation[J]. Biogeosciences, 2007, 4(1):115-124.
[39] 杜鹏瑞, 杜睿, 路则栋,等. 西藏那曲地区夏季降水中生物冰核的分布特征[J]. 中国环境科学,2015,35(7):1998-2006.
[40] Mortazavi R, Hayes C T, Ariya P A. Ice nucleation activity of bacteria isolated from snow compared with organic and inorganic substrates[J]. Environmental Chemistry, 2008, 5(6):373-381.
[41] Jayaweera K, Flanagan P. Investigations on biogenic ice nuclei in the Arctic atmosphere[J]. Geophysical Research Letters, 1982, 9(1):94-97.
[42] Pouleur S, Richard C, Martin J G, et al. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum[J]. Applied and Environmental Microbiology, 1992, 58(9):2960-2964.
[43] Tsumuki H, Konno H, Maeda T, et al. An ice-nucleating active fungus isolated from the gut of the rice stem borer, Chilo suppressalis, Walker (Lepidoptera:Pyralidae)[J]. Journal of Insect Physiology, 1992, 38(2):119-121.
[44] Richard C, Martin J G, Pouleur S. Ice nucleation activity identified in some phytopathogenic Fusarium species[J]. Phytoprotection, 1996, 77(2):83-92.
[45] Haga D I, Iannone R, Wheeler M J, et al. Ice nucleation properties of rust and bunt fungal spores and their transport to high altitudes, where they can cause heterogeneous freezing[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(13):7260-7272.
[46] Fröhlich-Nowoisky J, Hill T C J, Pummer B G, et al. Ice nucleation activity in the widespread soil fungus Mortierella alpina[J]. Biogeosciences, 2015, 11(8):1057-1071.
[47] Hoose C, Kristjánsson J E, Burrows S M. How important is biological ice nucleation in clouds on a global scale?[J]. Environmental Research Letters, 2010, 5(2):275-295.
[48] 王亚玲,杜睿,梁宗敏,等. 冰核细菌Pseudomonas syringae是否可以影响大气的冰核核化过程[J]. 科学通报, 2012,57(25):2413-2418.
[49] Junge K, Swanson B D. High-resolution ice nucleation spectra of sea-ice bacteria:Implications for cloud formation and life in frozen environments[J]. Biogeosciences, 2008, 5(3):865-873.
[50] Amato P, Ménager M, Sancelme M, et al. Microbial population in cloud water at the Puy de Dôme:implications for the chemistry of clouds[J]. Atmospheric Environment, 2005, 39(22):4143-4153.
[51] Christner B C, Cai R, Morris C E, et al. Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow[J]. Proceedings of the National Academy of Sciences, 2008, 105(48):18854-18859.
[52] Pandey R, Usui K, Livingstone R A, et al. Ice-nucleating bacteria control the order and dynamics of interfacial water[J]. Science advances, 2016, 2(4):e1501630.
[53] 李明亚,林陈水. 冰晶核蛋白及其在细菌表面展示技术中的应用[J]. 氨基酸和生物资源,2016,38(2):7-11.
[54] Kawahara H. The structures and functions of ice crystal-controlling proteins from bacteria[J]. Journal of Bioscience and Bioengineering, 2002, 94(6):492-496.
[55] Healy D A, Huffman J A, O'Connor D J, et al. Ambient measurements of biological aerosol particles near Killarney, Ireland:a comparison between real-time fluorescence and microscopy techniques[J]. Atmospheric Chemistry & Physics, 2014, 14(3):3875-3915.
[56] Fröhlich-Nowoisky J, Kampf C J, Weber B, et al. Bioaerosols in the Earth system:climate, health, and ecosystem interactions[J]. Atmospheric Research, 2016, 182:346-376.
[57] Ward P J, DeMott P J. Preliminary experimental evaluation of Snomax (TM) snow inducer, nucleus Pseudomonas syringae, as an artificial ice for weather modification[J]. The Journal of Weather Modification, 1989, 21(1):9-13.
[58] Möhler O, DeMott P J, Vali G, et al. Microbiology and atmospheric processes:the role of biological particles in cloud physics[J]. Biogeosciences, 2007, 4(6):1059-1071.
[59] Bauer H, Giebl H, Hitzenberger R, et al. Airborne bacteria as cloud condensation nuclei[J]. Journal of Geophysical Research, 2003, 108(21):1919-1964.
[60] Posselt R, Lohmann U. Influence of Giant CCN on warm rain processes in the ECHAM5 GCM[J]. Atmospheric Chemistry and Physics, 2008, 8(14):3769-3788.
[61] Andreae M O, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols[J]. Earth-Science Reviews, 2008, 89(1):13-41.
[62] Feingold G, Cotton W R, Kreidenweis S M, et al. The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus:implications for cloud radiative properties[J]. Journal of the Atmospheric Sciences, 1999, 56(24):4100-4117.
[63] Herlihy L J, Galloway J N, Mills A L. Bacterial utilization of formic and acetic acid in rainwater[J]. Atmospheric Environment, 1987, 21(11):2397-2402.
[64] Amato P, Demeer F, Melaouhi A, et al. A fate for organic acids, formaldehyde and methanol in cloud water:their biotransformation by micro-organisms[J]. Atmospheric Chemistry and Physics, 2007, 7(15):4159-4169.
[65] Ariya P A, Nepotchatykh O, Ignatova O, et al. Microbiological degradation of atmospheric organic compounds[J]. Geophysical Research Letters, 2002, 29(22):1-4.
[66] Ariya P A, Amyot M. New directions:the role of bioaerosols in atmospheric chemistry and physics[J]. Atmospheric Environment, 2004, 38(8):1231-1232.
[67] 房文,郑国光. 巨核对暖云降水影响的模拟研究[J]. 大气科学,2011,35(5):938-944. |