›› 2019, Vol. 36 ›› Issue (2): 145-154.DOI: 10.7523/j.issn.2095-6134.2019.02.001
DONG Chao, ZHANG Huai, SHI Yaolin
Received:
2018-02-27
Revised:
2018-03-28
Online:
2019-03-15
CLC Number:
DONG Chao, ZHANG Huai, SHI Yaolin. Geodynamo numerical simulation review[J]. , 2019, 36(2): 145-154.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.ucas.ac.cn/EN/10.7523/j.issn.2095-6134.2019.02.001
[1] Roberts P H. Theory of the Geodynamo[M].Oxford:Elsevier, 2015, 8:57-90. [2] Buffett B A. Earth's Core and the Geodynamo[J]. Science, 2000, 288(5473):2007-2012. [3] Christensen U R, Wicht J. Numerical dynamo simulations[M]. Oxford:Elsevier, 2015, 8:245-277. [4] Glatzmaier G A, Roberts P H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal[J]. Nature, 1995, 377(6546):203-209. [5] Glatzmaier G A, Roberts P H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle[J]. Physics of the Earth and Planetary Interiors, 1995, 91(1-3):63-75. [6] Song X R, Paul G. Seismological evidence for differential rotation of the Earth's inner core[J]. Nature, 1996, 382(6588):221-224. [7] Kageyama A, Sato T. Computer simulation of a magnetohydrodynamic dynamo. Ⅱ[J]. Physics of Plasmas, 1995, 2(5):1421-1431. [8] Kuang W, Bloxham J. An Earth-like numerical dynamo model[J]. Nature, 1997, 389(6649):371-374. [9] Christensen U R, Olsen P, Glatzmaier G A. Numerical modelling of the geodynamo a systematic parameter study[J]. Geophys J Int, 1999, 138(2):393-409. [10] Kono M, Roberts P H. Recent geodynamo simulations and observations of the geomagnetic field[J]. Reviews of Geophysics, 2002, 40(4):1-53. [11] Stanley S, Glatzmaier G. Dynamo models for planets other than Earth[J]. Space Science Reviews, 2010, 152:617-650. [12] Glatzmaier G A. Numerical simulation of stellar convective dynamos. 1. The model and methods[J]. Journal of Computational Physics, 1984, 55(3):461-484. [13] Omara B, Miesch M S, Featherstone N A, et al. Velocity amplitudes in global convection simulations:the role of the Prandtl number and near-surface driving[J]. Advances in Space Research, 2016, 58(8):1475-1489. [14] Jones C A. Planetary magnetic fields and fluid dynamos[J]. Annu Rev Fluid Mech, 2011, 43:583-614. [15] Matsui H, Heien E M, Aubert J, et al. Performance benchmarks for a next generation numerical dynamo model[J]. Geochemistry Geophysics Geosystems, 2016, 17(5):1586-1607. [16] Tilgner A. Precession-driven dynamos[J]. Physics of Fluids, 2005, 17(3):34-104. [17] Cowling T G. The stability of gaseous stars[J]. Monthly Notices of the Royal Astronomical Society, 1934, 94(8):768-782. [18] Anufriev A P, Jones C A, Soward A M. The Boussinesq and anelastic liquid approximations for convection in the Earth's core[J]. Physics of the Earth and Planetary Interiors, 2005, 152(3):163-190. [19] Jones C A. Thermal and Compositional Convection in the Outer Core[M]. Oxford:Elsevier, 2015, 8:115-159. [20] Christensen U R, Aubert J, Cardin P, et al. A numerical dynamo benchmark[J]. Physics of the Earth and Planetary Interiors, 2001, 128:25-34. [21] Gubbins D, Roberts P. Magnetohydrodynamics of the Earth's core[M]//Jacobs J A. Geomagnetism, London:Academic Press, 1987:1-183. [22] Braginsky S I, Roberts P H. Equations governing convection in Earth's core and the geodynamo[J]. Geophysical and Astrophysical Fluid Dynamics, 1995, 79:1-97. [23] Glatzmaier G A, Roberts P H. An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection[J]. Physica D, 1996, 97:81-94. [24] Kuang W, Bloxham J. Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell:weak and strong field dynamo action[J]. Journal of Computational Physics, 1999, 153(1):51-81. [25] Gastine T, Duarte L, Wicht J. Dipolar versus multipolar dynamos:the influence of the background density stratification[J]. Astronomy and Astrophysics, 2012, 546:A19. [26] Evonuk M, Samuel H. Simulating rotating fluid bodies:When is vorticity generation via density stratification important?[J]. Earth Planet. Science Letters, 2012, 317/318:1-7. [27] Glatzmaier G A, Roberts P H. Simulating the geodynamo[J]. Contemporary Physics, 1997, 38(4):269-288. [28] Olson P, Christensen U, Glatzmaier G A. Numerical modeling of the geodynamo:mechanisms of field generation and equilibration[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B5):10383-10404. [29] Glatzmaier G A, Roberts P H. Rotation and magnetism of Earth's inner core[J]. Science, 1996, 274(5294):1887-1891. [30] Makinen A M, Deuss A. Global seismic body wave observations of temporal variations in the Earth's inner core, and implications for its differential rotation[J]. Geophysical Journal International, 2011, 187(1):355-370. [31] Zhang J, Song X, Li Y, et al. Inner core differential motion confirmed by earthquake waveform doublets[J]. Science, 2005, 309(5739):1357-1360. [32] Buffett B A, Glatzmaier G A. Gravitational braking of inner-core rotation in geodynamo simulations[J]. Geophysical Research Letters, 2001, 27(19):3125-3128. [33] Hollerbach R. A spectral solution of the magneto-convection equations in spherical geometry[J]. International Journal for Numerical Methods in Fluids, 2000, 32(7):773-797. [34] Harder H, Hansen U. A finite-volume solution method for thermal convection and dynamo problems in spherical shells[J]. Geophysical Journal International, 2005, 161(2):522-532. [35] Kageyama A, Sato T. Dipole field generation by an MHD dynamo[J]. Plasma Physics and Controlled Fusion, 1997, 39:83-92. [36] Li J, Sato T, Kageyama A. Repeated and sudden reversals of the dipole field generated by spherical dynamo action[J]. Science, 2002, 295(5561):1887-1890. [37] Hollerbach R, Jones C A. A geodynamo model incorporating a finitely conducting inner core[J]. Physics of the Earth and Planetary Interiors, 1993, 75(4):317-327. [38] Wicht J. Inner-core conductivity in numerical dynamo simulations[J]. Physics of the Earth and Planetary Interiors, 2002, 132(4):281-302. [39] Dharmaraj G, Stanley S. Effect of inner core conductivity on planetary dynamo models[J]. Physics of the Earth and Planetary Interiors, 2012, 212/213:1-9. [40] Loper D E. Some thermal consequences of the gravitationally powered dynamo[J]. Journal of Geophysical Research, 1978, 83:5961-5970. [41] Nimmo F. Energetics of the Core[M]. Oxford:Elsevier, 2015, 8:27-55. [42] Corgne A, Keshav S, Fei Y W, et al. How much potassium is in the Earth's core? New insights from partitioning experiments[J]. Earth and Planetary Science Letters, 2007, 256:567-576. [43] Rama Murthy V, van Westrenen W, Fei Y. Experimental evidence that potassium is a substantial radioactive heat source in planetary cores[J]. Nature, 2003, 423(6936):163-165. [44] Driscoll P, Olson P. Polarity reversals in geodynamo models with core evolution[J]. Earth and Planetary Science Letters, 2009, 282:24-32. [45] Sakuraba A, Roberts P H. Generation of a strong magnetic field using uniform heat flux at the surface of the core[J]. Nature Geoscience, 2009, 2(11):802-805. [46] Hori K, Wicht J, Christensen U R. The effect of thermal boundary conditions on dynamos driven by internal heating[J]. Physics of the Earth and Planetary Interiors, 2010, 182:85-97. [47] Hori K, Wicht J, Christensen U R. The influence of thermo-compositional boundary conditions on convection and dynamos in a rotating spherical shell[J]. Physics of the Earth and Planetary Interiors, 2012, 196/197:32-48. [48] Alboussière T, Deguen R, Melzani M. Melting-induced stratification above the Earth's inner core due to the convective translation[J]. Nature, 2010, 466:744-747. [49] Bullard E C, Gellman H. Homogeneous dynamos and terrestrial magnetism[J]. Proceedings of the Royal Society of London A, 1954, 247(928):213-278. [50] Zhang K, Busse F H. Convection driven magnetohydrodynamic dynamos in rotating spherical shells[J]. Geophysical and Astrophysical Fluid Dynamics, 1989, 49:97-116. [51] Zhang K, Busse F H. Generation of magnetic fields by convection in a rotating spherical fluid shell of infinite Prandtl number[J]. Physics of the Earth and Planetary Interiors, 1990, 59(3):208-222. [52] Sakuraba A, Kono M. Effect of the inner core on the numerical simulation of the magnetohydrodynamic dynamo[J]. Physics of the Earth and Planetary Interiors, 1999, 111:105-121 [53] Stanley S, Bloxham J. Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields[J]. Nature, 2004, 428(6979):151-153. [54] Kageyama A, Yoshida M. Geodynamo and mantle convection simulations on the Earth Simulator using the Yin-Yang grid[J]. Journal of Physics:Conference Series, 2005, 16(1):325-338. [55] Wicht J, Stellmach S, Harder H. Numerical models of the geodynamo:from fundamental Cartesian models to 3D simulations of field reversals[M]. Berlin:Springer, 2009, 8:107-158. [56] Christensen U R, Aubert J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields[J]. Geophysical Journal International, 2006, 166(1):97-114. [57] Christensen U R. A sheet-metal geodynamo[J]. Nature, 2008, 454(7208):1058-1059. [58] Davies C J, Gubbins D, Jimack P K, et al. Scalability of pseudospectral methods for geodynamo simulations[J].Concurrency and Computation:Practice and Experience, 2011,23(1):38-56. [59] Christensen U R. Dynamo scaling laws and applications to the planets[J]. Space Science Reviews, 2010, 152(1-4):565-590. [60] Christensen U R, Tilgner A. Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos[J]. Nature, 2004, 429(6988):169-171. [61] Aubert J. Steady zonal flows in spherical shell dynamos[J]. Journal of Fluid Mechanics, 2005, 542(1):53-67. [62] Kuang W, Jiang W, Wang T. Sudden termination of Martian dynamo?:Implications from subcritical dynamo simulations[J]. Geophysical Research Letters, 2008, 35(14):L14204. [63] 王天媛, Wei Z G, Jiang W Y,等.数值模拟火星古发电机湮灭前磁场特征[J]. 中国科学:地球科学, 2013, 43(1):155-162. [64] Sreenivasan B, Sahoo S, Dhama G. The role of buoyancy in polarity reversals of the geodynamo[J]. Geophysical Journal International, 2014, 199(3):1698-1708. [65] Sarson G R, Jones C A, Longbottom A W. Convection driven geodynamo models of varying Ekman number[J]. Geophysical & Astrophysical Fluid Dynamics, 1998, 88(1-4):225-259. [66] Simitev R, Busse F H. Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells[J]. Journal of Fluid Mechanics, 2005, 532:365-388. [67] Calkins M A, Aurnou J M, Eldredge J D, et al. The influence of fluid properties on the morphology of core turbulence and the geomagnetic field[J]. Earth Planet Sci Lett, 2012, 359/360:55-60. [68] Starchenko S V, Jones C A. Typical velocities and magnetic field strengths in planetary interiors[J]. Icarus, 2002, 157(2):426-435. [69] 董超,焦立果,张怀,等. 外核黏性对地磁场发电机数值模型的影响[J].地球物理学报, 2018,61(4):1366-1377. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn