[1] Lerche W, Mayr P, Warner N. Holomorphic N=1 special geometry of open-closed type-Ⅱ strings[EB/OL]. (2002-08-07)[2018-04-15]. https://arxiv.org/abs/hep-th/0207259.
[2] Lerche W, Mayr P, Warner N. N=1 special geometry, mixed Hodge variations and toric geometry[EB/OL]. (2002-08-06)[2018-04-15]. https://arxiv.org/abs/hep-th/0208039.
[3] Mayr P. N=1 mirror symmetry and open/closed string duality[J]. Advances in Theoretical and Mathematical Physics, 2002, 5:213-242.
[4] Alim M, Hecht M, Jockers H, et al. Hints for off-shell mirror symmetry in type Ⅱ/F-theory compactifications[EB/OL]. (2010-09-23)[2018-04-15]. https://arxiv.org/abs/0909.1842.
[5] Gukov S, Vafa C, Witten E. CFT's from Calabi-Yau four-folds[J]. Nuclear Physics B, 2000, 584:69-108.
[6] Jockers H, Mayr P, Walcher J. On N=14d effective couplings for F-theory and heterotic Vacua[J]. Advances in Theoretical and Mathematical Physics, 2010, 14:1 433-1 514.
[7] Jockers H, Soroush M. Effective superpotentials for compact D5-brane Calabi-Yau geometries[J]. Communications in Mathematical Physics, 2009, 290:249-290.
[8] Xu F J, Yang F Z. Ooguri-Vafa invariants and off-shell superpotentials of Type-Ⅱ/F-theory compactification[J]. Chinese Physics C, 2014, 38(3):33 103.
[9] Xu F J, Yang F Z. Type Ⅱ/F-theory superpotentials and Ooguri-Vafa invariants of compact Calabi-Yau threefolds with three deformations[J]. Modern Physics Letters A, 2014, 29:1 450 062.
[10] Cheng S, Xu F J, Yang F Z. Off-shell D-brane/F-theory effective superpotentials and Ooguri-Vafa invariants of several compact Calabi-Yau manifolds[J]. Modern Physics Letters A, 2014, 29:1 450 061.
[11] Zhang S S, Yang F Z. Mirror Symmetry, D-brane superpotential and Ooguri-Vafa invariants of compact Calabi-Yau manifolds[J]. Chinese Physics C, 2015, 39(12):121 002.
[12] Zou H, Yang F Z. Effective superpotentials of type Ⅱ D-brane/F-theory on compact complete intersection Calabi-Yau threefolds[J]. Modern Physiscs Letters A, 2016, 31:1 650 094.
[13] Alim M, Hecht M, Mayr P, et al. Mirror symmetry for toric Branes on compact hypersurfaces[J]. Journal of High Energy Physics, 2009(9):126. doi:10.1088/1126-6708/2009/09/126.
[14] Batyrev V V. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties[J]. Journal of Algebraic Geometry, 1994, 3:493-545.
[15] Hosomo S, Klemm A, Theisen S, et al. Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces[J]. Nuclear Physics B, 1995, 433:501-554.
[16] Hosomo S, Klemm A, Theisen S, et al. Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces[J]. Communications in Mathematical Physics, 1995, 167:301-350.
[17] Hosono S, Lian B H, Yau S T. GKZ-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces[J]. Communications in Mathematical Physics, 1996, 182:535-557.
[18] Fulton W. Introduction to toric varieties[M]. Princeton:Princeton University Press, 1993.
[19] Bershadsky M, Vafa C. D-strings on D-manifolds[J]. Nuclear Physics B, 1996, 463:398-414.
[20] Fujino O, Sato H. Introduction to the toric Mori theory[EB/OL]. (2004-04-04)[2018-04-15]. https://arxiv.org/abs/math/0307180.
[21] Fujino O. Notes on toric varieties from Mori theoretic viewpoint[EB/OL]. (2001-12-10)[2018-04-15]. https://arxiv.org/abs/math/0112090v1.
[22] Scaramuzza A. Smooth complete toric varieties:an algorithmic approach[D]. Rome:University of Roma Tre, 2007.
[23] Renesse C V. Combinatiorial aspects of toric varieties[D]. University of Massachusetts Amherst, 2007.
[24] Witten E. Phases of N=2 theories in two-dimensions[J]. Nuclear Physics B, 1993, 403:159-222. |