[1] 王桥,厉青,高健,等.PM2.5卫星遥感技术及其应用[M].北京:中国环境出版社,2017.
[2] 戴羊羊,李成范,周时强,等.基于遥感的上海地区雾霾监测研究[J].测绘工程,2015(12):29-32.
[3] 任通,高玲,李成才,等.利用风云2C静止卫星可见光资料反演气溶胶光学厚度[J].北京大学学报(自然科学版),2011,47(4):636-646.
[4] 毛节泰,刘莉.GMS5卫星遥感气溶胶光厚度的试验研究[J].气象学报,2001,59(3):352-359.
[5] 张军华,斯召俊,毛节泰,等.GMS卫星遥感中国地区气溶胶光学厚度[J].大气科学, 2003, 27(1):23-35.
[6] 高玲,任通,李成才,等.利用静止卫星MTSAT反演大气气溶胶光学厚度[J].气象学报,2012,70(3):598-608.
[7] 陈健,周杰,李雅雯.基于静止卫星GOCI数据的陆地上空气溶胶光学厚度遥感反演[J].遥感技术与应用,2017,32(6):1 040-1 047.
[8] Moulin C, Dulac F, Lambert C E, et al. Long-term daily monitoring of Saharan dust load over ocean using Meteosat ISCCP-B2 data:2. Accuracy of the method and validation using Sun photometer measurements[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D14):16 959-16 969.
[9] Wang J, Christopher S A, Reid J S, et al. GOES 8 retrieval of dust aerosol optical thickness over the Atlantic Ocean during PRIDE[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D19):1-53.
[10] Prados A I, Kondragunta S, Ciren P, et al. GOES aerosol/smoke product (GASP) over North America:comparisons to AERONET and MODIS observations[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D15):1-15.
[11] Zou X, Zhuge X, Weng F. Characterization of bias of advanced Himawari imager infrared observations from NWP background simulations using CRTM and RTTOV[J]. Journal of Atmospheric & Oceanic Technology, 2016, 33(12):2 553-2 567.
[12] Kurihara Y, Murakami H, Kachi M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite[J]. Geophysical Research Letters, 2016, 43(3):1 234-1 240.
[13] Shang H Z, Chen L F, Letu H S, et al. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China[J]. Journal of Geophysical Research Atmospheres, 2017, 122(6):3 528-3 543.
[14] Daisaku U. Aerosol Optical Depth product derived from Himawari-8 data for Asian dust monitoring[R]. Meteorological Satellite Center Technical Note, 2016, 61:59-63.
[15] Sekiyama T T, Yumimoto K, Tanaka T Y, et al. Data assimilation of Himawari-8 aerosol observations:Asian dust forecast in June 2015[J]. SOLA-Scientific Online Letters on the Atmosphere, 2016, 12:86-90.
[16] 葛邦宇,杨磊库,陈兴峰,等.暗目标法的Himawari-8静止卫星数据气溶胶反演[J].遥感学报,2018,22(1):38-50.
[17] Wang W, Mao F Y, Du L, et al. Deriving hourly PM2.5 concentrations from Himawari-8 AODs over Beijing-Tianjin-Hebei in China[J]. Remote Sensing, 2017, 9(8):858.
[18] 郭强,唐家奎,何文通,等.利用MODIS可见光波段反演陆地气溶胶光学厚度[J].地理与地理信息科学,2015,31(2):38-43.
[19] Vermote E F, Tanre D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S:an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3):675-686.
[20] Flowerdew R J, Haigh J D. An approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers[J]. Geophysical Research Letters, 2013, 22(13):1 693-1 696.
[21] 吕春光,田庆久,王磊,等.利用Landsat-8 OLI反演大气气溶胶的可见光谱段地表反射率估算[J]. 遥感信息,2015(1):43-50.
[22] 麻盛芳.MODIS地表反射率产品支持的HJ-1CCD数据高精度大气纠正[D].青岛:山东科技大学,2013.
[23] Sayer A M, Thomas G E, Grainger R G, et al. Use of MODIS-derived surface reflectance data in the ORAC-AATSR aerosol retrieval algorithm:impact of differences between sensor spectral response functions[J]. Remote Sensing of Environment, 2012, 116(2):177-188.
[24] 郭强.京津冀地区气溶胶光学厚度及空气质量指数遥感反演研究[D].北京:中国科学院大学,2014.
[25] Herold M, Gardner M E, Roberts D. Spectral resolution requirements for mapping urban areas[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(9):1 907-1 919.
[26] 李成才,毛节泰,刘启汉,等.利用MODIS光学厚度遥感产品研究北京及周边地区的大气污染[J].大气科学,2003,27(5):869-880.
[27] 王静,杨复沫,王鼎益,等.北京市MODIS气溶胶光学厚度和PM2.5质量浓度的特征及其相关性[J]. 中国科学院研究生院学报,2010,27(1):10-16. |