[1] 王海宁. 中国煤炭资源分布特征及其基础性作用新思考[J]. 中国煤炭地质, 2018, 30(7):5-9.
[2] Zhang T H, Zhao H L, Li S G, et al. Grassland changes under grazing stress in Horqin sandy grassland in Inner Mongolia, China[J]. New Zealand Journal of Agricultural Research, 2004, 47(3):307-312.
[3] Liu B X, Shao M A. Modeling soil-water dynamics and soil-water carrying capacity for vegetation on the Loess Plateau, China[J]. Agricultural Water Management, 2015, 159(1):176-184.
[4] Wang L, Wang Q, Wei S P, et al. Soil desiccation for Loess soils on natural and regrown areas[J]. Forest Ecology & Management, 2008, 255(7):2467-2477.
[5] He Y M, He X, Liu Z R, et al. Coal mine subsidence has limited impact on plant assemblages in an arid and semi-arid region of northwestern China[J]. Ecoscience, 2017, 24(3/4):91-103.
[6] Luan H J, Lin H L, Jiang Y J, et al. Risks induced by room mining goaf and their assessment:a case study in the Shenfu-Dongsheng Mining Area[J]. Sustainability, 2018, 10(3):17.
[7] Yan W T, Dai H Y, Chen J J. Surface crack and sand inrush disaster induced by high-strength mining:example from the Shendong coal field, China[J]. Geosciences Journal, 2018, 22(2):347-357.
[8] 白二虎, 郭文兵, 谭毅, 等. 厚煤层高强度开采对地表响应的特征与机理[J]. 安全与环境学报, 2018, 18(2):503-508.
[9] 陈超. 风沙区超大工作面地表及覆岩动态变形特征与自修复研究[D]. 北京:中国矿业大学(北京), 2018.
[10] 陈凯, 张俊英, 贾新果, 等. 浅埋煤层综采工作面地表移动规律研究[J]. 煤炭科学技术, 2015, 43(4):127-130,70.
[11] Guo D G, Bai Z K, Shangguan T L, et al. Impacts of coal mining on the aboveground vegetation and soil quality:a case study of Qinxin Coal Mine in Shanxi Province, China[J]. CLEAN-Soil, Air, Water, 2011, 39(3):219-225.
[12] Li L, Wu K, Hu Z Q, et al. Analysis of developmental features and causes of the ground cracks induced by oversized working face mining in an aeolian sand area[J]. Environmental Earth Sciences, 2017, 76(3):135.
[13] Li P Y. Groundwater quality in Western China:challenges and paths forward for groundwater quality research in Western China[J]. Exposure and Health, 2016, 8(3):305-310.
[14] Guo X M, Zhao T Q, Chang W K, et al. Evaluating the effect of coal mining subsidence on the agricultural soil quality using principal component analysis[J]. Chilean Journal of Agricultural Research, 2018, 78(2):173-182.
[15] Shi P L, Zhang Y X, Hu Z Q, et al. The response of soil bacterial communities to mining subsidence in the west China aeolian sand area[J]. Applied Soil Ecology, 2017, 121:1-10.
[16] 林卡, 李德成, 张甘霖. 土壤质量评价中文文献分析[J]. 土壤通报, 2017, 48(3):736-744.
[17] Karlen D L, Mausbach, M. J, Doran, J. W, et al. Soil quality:a concept, definition, and framework for evaluation (a guest editorial)[J]. Soil Science Society of America Journal, 1997, 61(1):4.
[18] B?ońska E, Lasota J, Piaszczyk W, et al. The effect of landslide on soil organic carbon stock and biochemical properties of soil[J]. Journal of Soils and Sediments, 2018, 18(8):2727-2737.
[19] Xu Z W, Yu G R, Zhang X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in Eastern China (NSTEC)[J]. Soil Biology and Biochemistry, 2017, 104:152-163.
[20] 赵龙飞. 河南商丘地区豆科植物根瘤菌资源多样性调查[J]. 江苏农业科学, 2013, 41(5):329-332.
[21] 何金军, 魏江生, 贺晓, 等. 采煤塌陷对黄土丘陵区土壤物理特性的影响[J]. 煤炭科学技术, 2007(12):92-96.
[22] 王琦, 全占军, 韩煜, 等. 风沙区采煤塌陷不同恢复年限土壤理化性质变化[J]. 水土保持学报, 2014, 28(2):118-122,126.
[23] 王健, 武飞, 高永, 等. 风沙土机械组成、容重和孔隙度对采煤塌陷的响应[J]. 内蒙古农业大学学报(自然科学版), 2006(4):37-41.
[24] 魏婷婷, 胡振琪, 曹远博, 等. 风沙区超大工作面开采对土壤及植物特性的影响[J]. 四川农业大学学报, 2014, 32(4):376-381.
[25] 杜华栋, 赵晓光, 张勇, 等. 榆神府覆沙矿区采煤塌陷地表层土壤理化性质演变[J]. 土壤, 2017, 49(4):770-775.
[26] 刘哲荣, 燕玲, 贺晓, 等. 采煤沉陷干扰下土壤理化性质的演变:以大柳塔矿采区为例[J]. 干旱区资源与环境, 2014, 28(11):133-138.
[27] 郭欣伟, 董国涛, 何宏谋, 等. 煤矿开采导水裂隙带发育对潜水水位影响研究[J]. 水利水电技术, 2017, 48(9):60-64,111.
[28] Wang Y C, Bian Z F, Lei S G, et al. Investigating spatial and temporal variations of soil moisture content in an arid mining area using an improved thermal inertia model[J]. Journal of Arid Land, 2017, 9(5):712-726.
[29] Machowski R, Rzetala M A, Rzetala M, et al. Geomorphological and hydrological effects of subsidence and land use change in industrial and urban areas[J]. Land Degradation & Development, 2016, 27(7):1740-1752.
[30] Wang J M, Wang P, Qin Q, et al. The effects of land subsidence and rehabilitation on soil hydraulic properties in a mining area in the Loess Plateau of China[J]. Catena, 2017, 159:51-59.
[31] 赵红梅, 张发旺, 宋亚新, 等. 大柳塔采煤塌陷区土壤含水量的空间变异特征分析[J]. 地球信息科学学报, 2010, 12(6):753-760.
[32] 杜国强, 陈秀琴, 郄晨龙, 等. 半干旱矿区地裂缝对土壤水分和地表剪切强度的影响[J]. 生态与农村环境学报, 2016, 32(2):224-228.
[33] 台晓丽, 胡振琪, 陈超. 西部风沙区不同采煤沉陷区位土壤水分中子仪监测[J]. 农业工程学报, 2016, 32(15):225-231.
[34] 程林森, 雷少刚, 卞正富. 半干旱区煤炭开采对土壤含水量的影响[J]. 生态与农村环境学报, 2016, 32(2):219-223.
[35] 韩煜, 史娜娜, 王琦, 等. 采煤塌陷干扰下风沙区土壤理化性质变化特征[J]. 环境科学与技术, 2016, 39(11):15-19,41.
[36] 毕银丽, 邹慧, 彭超, 等. 采煤沉陷对沙地土壤水分运移的影响[J]. 煤炭学报, 2014, 39(S2):490-496.
[37] 张欣, 王健, 刘彩云. 采煤塌陷对土壤水分损失影响及其机理研究[J]. 安徽农业科学, 2009, 37(11):5058-5062.
[38] 赵国平, 史社强, 李军保, 等. 毛乌素沙地采煤塌陷区土壤水分空间变异研究[J]. 水土保持学报, 2017, 31(6):90-93,219.
[39] Xue L, Li Q J, Chen H Y. Effects of a wildfire on selected physical, chemical and biochemical soil properties in a pinus massoniana forest in South China[J]. Forests, 2014, 5(12):2947-2966.
[40] Yang D J, Bian Z F, Lei S G. Impact on soil physical qualities by the subsidence of coal mining:a case study in Western China[J]. Environmental Earth Sciences, 2016, 75(8):652.
[41] Wei T T, Chen C, Ye S S, et al. Coal mining subsidence impact on soil physical and chemical properties in Windy Desert Area[J]. Advanced Materials Research, 2015, 1092/1093:1087-1091.
[42] Yi Q T, Xie K, Sun P F, et al. Characterization of phosphorus in the sedimentary environments of inundated agricultural soils around the Huainan Coal Mines, Anhui, China[J]. Science of The Total Environment, 2014, 472:538-549.
[43] 王双明, 杜华栋, 王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报, 2017, 42(1):17-26.
[44] 周瑞平. 鄂尔多斯地区采煤塌陷对风沙土壤性质的影响[D]. 呼和浩特:内蒙古农业大学, 2008.
[45] 赵瑜, 袁玉敏, 陈超. 风沙区采煤扰动下土壤养分含量的演变特征[J]. 中国矿业, 2017, 26(6):84-87,94.
[46] Vincent Q, Auclerc A, Beguiristain T, et al. Assessment of derelict soil quality:abiotic, biotic and functional approaches[J]. Science of the Total Environment, 2018, 613:990-1002.
[47] Li T X, Meng L L, Uwizeyimana H, et al. A survey of soil enzyme activities along major roads in Beijing:the implications for traffic corridor green space management[J]. International Journal of Environmental Research and Public Health, 2015, 12(10):12475-12488.
[48] Zhang X Y, Yang Y, Zhang C, et al. Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils[J]. Functional Ecology, 2018, 32(1):106-116.
[49] 王锐, 马守臣, 张合兵, 等. 干旱区高强度开采地表裂缝对土壤微生物学特性和植物群落的影响[J]. 环境科学研究, 2016, 29(9):1249-1255.
[50] 杜涛. 煤炭开采对植物根际微环境影响规律及生态修复效应[D]. 北京:中国矿业大学(北京), 2013.
[51] 于淼. 采煤沉陷区生态演替规律及菌根修复作用与后效研究[D].北京:中国矿业大学(北京), 2014.
[52] Wang P J, Hu Z Q, Yost R S, et al. Assessment of chemical properties of reclaimed subsidence land by the integrated technology using Yellow River sediment in Jining, China[J]. Environmental Earth Sciences, 2016, 75(12):15.
[53] Bi Y L, Zhang Y X. Role of the different planting age of seabuckthorn forests to soil amelioration in coal mining subsidence land[J]. International Journal of Coal Science & Technology, 2014, 1(2):192-197. |