[1] Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fel(001) Cr magnetic snperlattices[J]. Physical Review Letters, 1988, 61:2472-2475. [2] Binasch G, Griinberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Physical Review B, 1989, 39:4828-4830. [3] Ikeda S, Hayakawa J, Ashizawa Y, et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB-MgO-CoFeB pseudo-spin-valves annealed at high temperature[J]. Applied Physics Letters, 2008, 93:082508. [4] Miyazaki T, Tezuka N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction[J]. Journal of Magnetism and Magnetic Materials, 1995, 139:L231-L234. [5] Wen Z C, Sukegawa H, Mitnai S, et al. Tunnel magnetoresistance in textured Co2FeAl/MgO/CoFe magnetic tunnel junctions on a Si/SiO2 amorphous substrate[J]. Applized Physics Letters, 2011, 98:192505. [6] Wulfhekel W, Klaua M, Ullmann D, et al. Single-crystal magneto tunnel junctions[J]. Applized Physics Letters, 2001, 78:509-511. [7] Moodera J S, Kinder L R, Wong T M, et al. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions[J]. Physical Review Letters, 1995, 74:3273-3276. [8] Currivan-Incorvia J A, Siddiqui S, Dutta S, et al. Logic circuit prototypes for three-terminal magnetictunnel junctions with mobile domain walls[J]. Nature Communications, 2016, 7:10275. [9] Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics:a spin-based electronics vision for the future[J]. Science, 2001, 294:1488-1495. [10] Novoselov J S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306:666-669. [11] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9:372-377. [12] Hong T, Chamlagain B, Lin W, et al. Polarized photocurrent response in black phosphorus field-effect transistors[J]. Nanoscale, 2014, 6:8978-8983. [13] Mak K F, Lee C G, Home J, et al. Atomically thin MoS2:a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105:136805. [14] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal diachalcogenides[J]. Nature Nanotechnology, 2012, 7:699-712. [15] Leong W S, Li Y, Luo C, et al. Tuning the threshold voltage of MoS2 field-effect transistors via surface treatment[J]. Nanoscale, 2015, 7:10823-10831. [16] Jiang L F, Zeng H B. Comment on "Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation"[J]. Nanoscale, 2015, 7:4580-4583. [17] Sheng X L, K.Nikolic' B. Monolayer of the 5d transition metal trichloride OsCl3:a playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions[J]. Physical Review B,2017,95:201402(R). [18] Weber D, Schoop L M, Duppel V, et al. Magnetic properties of restacked 2D spin 1/2 honeycomb RuCl3 Nanosheets[J]. Nano Letters, 2016, 16:3578-3584. [19] McGuire M A, Dixit H, Cooper V R, et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3[J]. Chemistry of Materials, 2015, 27:612-620. [20] Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546:270-273. [21] Zhou Y G, Lu H F, Zu X T, et al. Evidencing the existence of exciting half-metallicity in two-dimensional TiCl3 and VCl3 sheets[J]. Scientific Reports, 2015, 6:19407. [22] Zacharia R, Ulbricht H, Tobias H. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons[J]. Physical Review B, 2004, 69:155406. [23] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54:11169-11186. [24] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868. [25] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Physical Review B, 2001, 63:245407. |