[1] Cummimg I, Wong F. 合成孔径雷达成像:算法与实现[M]. 北京:电子工业出版社, 2012:2-11. [2] Mcnairn H, Brisco B. The application of C-band polarimetric SAR for agriculture:a review[J]. Canadian Journal of Remote Sensing, 2004, 30(3):525-542. [3] Ross T D, Worrell S W, Velten V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]//Algorithms for Synthetic Aperture Radar Imagery V. Orlando, United States:International Society for Optics and Photonics, 1998, 3370:566-574. [4] Anagnostopoulos G C. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors[J]. Nonlinear Analysis:Theory, Methods & Applications, 2009, 71(12):e2934-e2939. [5] Song S, Xu B, Yang J. SAR target recognition via supervised discriminative dictionary learning and sparse representation of the SAR-HOG feature[J]. Remote Sensing, 2016, 8(8):683. [6] Park J I, Kim K T. Modified polar mapping classifier for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1092-1107. [7] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. Nevada, USA:Curran Associates Inc, 2012:1097-1105. [8] Schmidhuber J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [9] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE Computer Society, 2015:1-9. [10] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE Computer Society, 2016:770-778. [11] Malmgren-Hansen D, Kusk A, Dall J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9):1484-1488. [12] Morgan D A E. Deep convolutional neural networks for ATR from SAR imagery[C]//Algorithms for Synthetic Aperture Radar Imagery XXII. Maryland, United States:International Society for Optics and Photonics, 2015, 9475:94750F. [13] 李松, 魏中浩, 张冰尘, 等. 深度卷积神经网络在迁移学习模式下的SAR目标识别[J]. 中国科学院大学学报, 2018, 35(1):75-83. [14] Huang Z, Pan Z, Lei B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data[J]. Remote Sensing, 2017, 9(9):907. [15] 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2):136-148. [16] 董纯柱, 胡利平, 朱国庆,等. 地面车辆目标高质量SAR图像快速仿真方法[J]. 雷达学报, 2015, 4(3):351-360. [17] Kusk A, Abulaitijiang A, Dall J. Synthetic SAR image generation using sensor, terrain and target models[C]//Proceedings of EUSAR 2016:11th European Conference on Synthetic Aperture Radar. Hamburg, Germany:VDE, 2016:1-5. [18] Shang W, Sohn K, Almeida D, et al. Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//International Conference on Machine Learning. New York:ICML, 2016:2217-2225. [19] Ioffe S. Batch renormalization:Towards reducing minibatch dependence in batch-normalized models[C]//Advances in Neural Information Processing Systems. Long Beach:NIPS, 2017:1945-1953. [20] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Sardinia:AISTATS, 2010:249-256. [21] He K, Zhang X, Ren S, et al. Delving deep into rectifiers:Surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington, DC, USA:IEEE Computer Society, 2015:1026-1034. [22] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Long Beach, NIPS, 2017:5998-6008. |