[1] 王荣, 贺锋, 徐栋, 等. 人工湿地基质除磷机理及影响因素研究[J]. 环境科学与技术, 2010, 33(S1):12-18. [2] Cui L H, Zhu X Z, Ma M, et al. Phosphorus sorption capacities and physicochemical properties of nine substrate materials for constructed wetland[J]. Archives of Environmental Contamination and Toxicology, 2008, 55(2):210-217. [3] Tsihrintzis V A. The use of vertical flow constructed wetlands in wastewater treatment[J]. Water Resources Management, 2017, 31(10):3245-3270. [4] 马琳, 贺锋. 我国农村生活污水组合处理技术研究进展[J]. 水处理技术, 2014, 40(10):1-5. [5] Dai H L, Hu F P. Phosphorus adsorption capacity evaluation for the substrates used in constructed wetland systems:a comparative study[J]. Polish Journal of Environmental Studies, 2017, 26(3):1003-1010. [6] Bubba M D, Arias C A, Brix H. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm[J]. Water Research, 2003, 37(14):3390-3400. [7] 袁东海, 景丽洁, 张孟群, 等. 几种人工湿地基质净化磷素的机理[J]. 中国环境科学, 2004, 24(5):614-617. [8] Mann R A, Bavor H J. Phosphorus removal in constructed wetlands using gravel and industrial waste substrata[J]. Water Science and Technology, 1993, 27(1):107-113. [9] 王振华, 朱波, 何敏, 等. 紫色土泥沙沉积物对磷的吸附-解吸动力学特征[J]. 农业环境科学学报, 2011, 30(1):154-160. [10] 赵桂瑜, 秦琴, 周琪. 几种人工湿地基质对磷素的吸附作用研究[J]. 环境科学与技术, 2006(6):84-85,120. [11] Li Y C, Yang J, Zhou X R, et al. Elimination of phosphorous from phosphorus-rich farmyard wastewater using reeds bed system containing steel furnace slag[J]. Desalination and Water Treatment, 2014, 52(46):6648-6654. [12] 袁东海, 高士祥, 景丽洁, 等. 几种粘土矿物和粘土对溶液中磷的吸附效果[J]. 农村生态环境, 2004, 20(4):60-63,72. [13] Barca C, Meyer D, Liira M, et al. Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants:removal mechanisms and performance[J]. Ecological Engineering, 2014, 68:214-222. [14] 路沙沙, 麻凤海, 刘书贤. 天然沸石特性对含磷废水净化效果的影响[J]. 环境工程学报, 2015, 9(6):2711-2716. [15] Cui L J, Li W, Zhou J, et al. Influence of substrate depth and particle size on phosphorus removal in a surface flow constructed wetland[J]. Water Science and Technology, 2017, 75(10):2291-2298. [16] Li L Y, Zhang H, Wang D Q. Influencing factors of limestone sorption and its usage in advanced wastewater treatment for phosphorus removal[J]. International Journal of Nanoscience, 2012, 11(6):316-321. [17] 赵林丽, 邵学新, 吴明, 等. 人工湿地不同基质和粒径对污水净化效果的比较[J]. 环境科学, 2018, 39(9):4236-4241. [18] Jiang C, Jia L Y, He Y L, et al. Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite[J]. Journal of Colloid and Interface Science, 2013, 402:246-252. [19] Njau K N, Minja R J A, Katima J H Y. Pumice soil:a potential wetland substrate for treatment of domestic wastewater[J]. Water Science and Technology, 2003, 48(5):85-92. [20] 张修稳, 李锋民, 卢伦, 等. 10种人工湿地填料对磷的吸附特性比较[J]. 水处理技术, 2014, 40(3):49-52,56. [21] 蒋卫刚. 人工湿地技术在景观水处理中的应用案例研究[J]. 环境污染与防治, 2011, 33(7):87-89,93. [22] 朱加宾, 李冰, 侯诒然, 等. 人工湿地不同植物根系及基质重金属富集特征及其与环境因子相关性[J]. 上海海洋大学学报, 2018, 27(4):531-542. [23] 王生福, 李伟斯, 苏庆梅. 基于实地调查研究的湿地水质提升与功能恢复对策探讨:以临沂市罗庄区武河湿地为例[J]. 环境与可持续发展, 2018, 43(5):112-115. [24] 贺婷婷. 石子河人工湿地水质净化工程设计[J]. 中国给水排水, 2018, 34(14):50-53. |