[1] Lipinski C A, Lombardo F, Dominy B W, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Advanced Drug Delivery Reviews, 1997, 23(1-3):3-25. [2] 涂展春, 欧阳钟灿. 生物膜弹性的几何理论[J]. 中国科学院研究生院学报, 2008, 25(6):849-854. [3] 秦飞, 姚鑫. 环糊精固载量不同的壳聚糖药物载体合成及性能[J]. 中国科学院大学学报, 2015, 32(1):51-56. [4] Dissanayake S, Denny W A, Gamage S, et al. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides[J]. Journal of Controlled Release, 2017, 250:62-76. [5] Borrelli A, Tornesello A L, Tornesello M L, et al. Cell penetrating peptides as molecular carriers for anti-cancer agents[J]. Molecules, 2018, 23(2):295. [6] Taylor R E, Zahid M. Cell penetrating peptides, novel vectors for gene therapy[J]. Pharmaceutics, 2020, 12(3):225. [7] Wang F H, Wang Y, Zhang X, et al. Recent progress of cellpenetrating peptides as new carriers for intracellular cargo delivery[J]. Journal of Controlled Release, 2014, 174:126-136. [8] 何小林, 王大成. 中国马氏钳蝎神经毒素BmK M1和M4的晶体结构研究[J]. 中国科学院研究生院学报, 2001, 18(1):97-100. [9] Singh T, Murthy A S N, Yang H J, et al. Versatility of cell-penetrating peptides for intracellular delivery of siRNA[J]. Drug Delivery, 2018, 25(1):1996-2006. [10] Cardoso A M S, Trabulo S, Cardoso A L, et al. S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes:Implications for cell internalization[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2012, 1818(3):877-888. [11] Morais C M, Cardoso A M, Aguiar L, et al. Lauroylated histidine-enriched S413-PV peptide as an efficient gene silencing mediator in cancer cells[J]. Pharmaceutical Research, 2020, 37(10):188. [12] Morais C M, Cardoso A M, Cunha P P, et al. Acylation of the S413-PV cell-penetrating peptide as a means of enhancing its capacity to mediate nucleic acid delivery:relevance of peptide/lipid interactions[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2018, 1860(12):2619-2634. [13] Hariton-Gazal E, Feder R, Mor A, et al. Targeting of nonkaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals[J]. Biochemistry, 2002, 41(29):9208-9214. [14] Trabulo S, Mano M, Faneca H, et al. S413-PV cell penetrating peptide and cationic liposomes act synergistically to mediate intracellular delivery of plasmid DNA[J]. The Journal of Gene Medicine, 2008, 10(11):1210-1222. [15] Mano M, Teodósio C, Paiva A, et al. On the mechanisms of the internalization of S413-PV cell-penetrating peptide[J]. The Biochemical Journal, 2005, 390(Pt2):603-612. [16] Mano M, Henriques A, Paiva A, et al. Cellular uptake of S413-PV peptide occurs upon conformational changes induced by peptide-membrane interactions[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2006, 1758(3):336-346. [17] Mano M, Henriques A, Paiva A, et al. Interaction of S413-PV cell penetrating peptide with model membranes:relevance to peptide translocation across biological membranes[J]. Journal of Peptide Science, 2007, 13(5):301-313. [18] Padari K, Koppel K, Lorents A, et al. S413-PV cell-penetrating peptide forms nanoparticle-like structures to gain entry into cells[J]. Bioconjugate Chemistry, 2010, 21(4):774-783. [19] Xu Y C, Jiang H L. Molecular dynamics simulations studies on the structure-function relationship of protein targets related to Alzheimer's disease[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(2):280-287. [20] 方磊, 计明娟. PTP1B选择性抑制剂的分子动力学模拟及结合自由能计算[J]. 中国科学院研究生院学报, 2009, 26(1):58-64. [21] Gautam A, Singh H, Tyagi A, et al. CPPsite:a curated database of cell penetrating peptides[J]. Database:the Journal of Biological Databases and Curation, 2012, 2012:bas015. [22] Kardani K, Bolhassani A. Cppsite 2.0:an available database of experimentally validated cell-penetrating peptides predicting their secondary and tertiary structures[J]. Journal of Molecular Biology, 2020, 433(11):166703. [23] Agrawal P, Bhalla S, Usmani S S, et al. CPPsite 2.0:a repository of experimentally validated cell-penetrating peptides[J]. Nucleic Acids Research, 2016, 44(D1):D1098-D1103. [24] Bagheri M, Keller S, Dathe M. Interaction of W-substituted analogs of cyclo-RRRWFW with bacterial lipopolysaccharides:the role of the aromatic cluster in antimicrobial activity[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(2):788-797. [25] Kim S, Chen J, Cheng T J, et al. PubChem 2019 update:improved access to chemical data[J]. Nucleic Acids Research, 2019, 47(D1):D1102-D1109. [26] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A.01[CP]. Gaussian, Inc, Wallingford CT, 2009. [27] Wang J M, Wolf R M, Caldwell J W, et al. Development and testing of a general amber force field[J]. Journal of Computational Chemistry, 2004, 25(9):1157-1174. [28] Case D A, Ben-Shalom I Y, Brozell S R, et al. AMBER 2018[CP]. University of California, San Francisco, 2018. [29] Sousa da Silva A W, Vranken W F. ACPYPE-AnteChamber PYthon parser interface[J]. BMC Research Notes, 2012, 5(1):367. [30] Wang J M, Cieplak P, Kollman P A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?[J]. Journal of Computational Chemistry, 2000, 21(12):1049-1074. [31] Martínez L, Andrade R, Birgin E G, et al. PACKMOL:a package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13):2157-2164. [32] Maier J A, Martinez C, Kasavajhala K, et al. ff14SB:improving the accuracy of protein side chain and backbone parameters from ff99SB[J]. Journal of Chemical Theory and Computation, 2015, 11(8):3696-3713. [33] Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2):926-935. [34] Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes[J]. Journal of Computational Physics, 1977, 23(3):327-341. [35] Darden T, York D, Pedersen L. Particle mesh Ewald:an N·log(N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12):10089-10092. [36] Kumar S, Rosenberg J M, Bouzida D, et al. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method[J]. Journal of Computational Chemistry, 1992, 13(8):1011-1021. [37] Souaille M, Roux B. Extension to the weighted histogram analysis method:combining umbrella sampling with free energy calculations[J]. Computer Physics Communications, 2001, 135(1):40-57. [38] Roe D R, Cheatham T E. PTRAJ and CPPTRAJ:software for processing and analysis of molecular dynamics trajectory data[J]. Journal of Chemical Theory and Computation, 2013, 9(7):3084-3095. |