[1] 肖垚, 刘畅. 基于稀疏求解的改进PCA方法在SAR目标识别中的应用[J]. 中国科学院大学学报, 2018, 35(1):84-88.DOI:10.7523/j.issn.2095-6134.2018.01.011. [2] 李松, 魏中浩, 张冰尘, 等.深度卷积神经网络在迁移学习模式下的SAR目标识别[J]. 中国科学院大学学报, 2018, 35(1):75-83.DOI:10.7523/j.issn.2095-6134.2018.01.010. [3] 向卫力, 李晓辉, 周勇胜, 等. 一种鲁棒的多尺度稀疏表示SAR目标识别方法[J]. 中国科学院大学学报, 2017, 34(1):99-105.DOI:10.7523/j.issn.2095-6134.2017.01.013. [4] Lightstone L, Faubert D, Rempel G. Multiple phase centre DPCA for airborne radar[C] //Proceedings of the 1991 IEEE National Radar Conference. March 12-13, 1991, Los Angeles, CA, USA. IEEE, 1991:36-40.DOI:10.1109/NRC.1991.114720. [5] Cao C H, Zhang Z H, Meng J M, et al. Clutter suppression and moving target indication with airborne wide-area surveillance radar[C] //2016 CIE International Conference on Radar (RADAR). October 10-13, 2016, Guangzhou, China. IEEE, 2016:1-5.DOI:10.1109/RADAR.2016.8059385. [6] Yan H, Li F, Robert W, et al. Moving targets extraction in multichannel wide-area surveillance system by exploiting sparse phase matrix[J]. IET Radar, Sonar & Navigation, 2012, 6(9):913-920.DOI:10.1049/iet-rsn.2012.0067. [7] Yan H, Wang R, Li F, et al. Ground moving target extraction in a multichannel wide-area surveillance SAR/GMTI system via the relaxed PCP[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3):617-621.DOI:10.1109/LGRS.2012.2216248. [8] Li Q N, Yan H, Wu L Q, et al. Robust PCA for ground moving target indication in wide-area surveillance radar system[J]. Journal of the Operations Research Society of China, 2013, 1(1):135-153.DOI:10.1007/s40305-013-0006-y. [9] Li Q N, He L, Qi L J, et al. Unique decomposition and a new model for the ground moving target Indication problem[J]. Journal of Optimization Theory and Applications, 2017, 173(1):297-312.DOI:10.1007/s10957-016-1052-5. [10] Lin Z C, Chen M M, Ma Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[R/OL]. (2013-10-18) [2020-01-03]. http://arXiv.org/pdf/1009.5055.pdf. [11] Zheng M J, Yan H, Zhang L, et al. Research on strong clutter suppression for Gaofen-3 dual-channel SAR/GMTI[J]. Sensors, 2018, 18(4):978-992.DOI:10.3390/s18040978. [12] Guyon C, Bouwmans T, Zahzah E H. Foreground detection based on low-rank and block-sparse matrix decomposition[C]// 2012 19th IEEE International Conference on Image Processing. September 30-October 3, 2012, Orlando, FL, USA. IEEE, 2012:1225-1228.DOI:10.1109/ICIP.2012.6467087. [13] Tang G G, Nehorai A. Robust principal component analysis based on low-rank and block-sparse matrix decomposition[C] // 2011 45th Annual Conference on Information Sciences and Systems. March 23-25, 2011, Baltimore, MD, USA. IEEE, 2011:1-5.DOI:10.1109/CISS.2011.5766144. [14] Fadili M J, Starck J L. Monotone operator splitting for optimization problems in sparse recovery[C]//2009 16th IEEE International Conference on Image Processing (ICIP). November 7-10, 2009, Cairo, Egypt. IEEE, 2009:1461-1464.DOI:10.1109/ICIP.2009.5414555. [15] Candès E J, Li X D, Ma Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3):1-37.DOI:10.1145/1970392.1970395. [16] Hoyer P O. Non-negative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5:1457-1469. |