[1] Li Y T, Cheng Q F, Liu X M, et al. A secure anonymous identity-based scheme in new authentication architecture for mobile edge computing[J]. IEEE Systems Journal, 2021, DOI: 10.1109/JSYST.2020.2979006. [2] Dinh T Q, Tang J H, La Q D, et al. Offloading in mobile edge computing: task allocation and computational frequency scaling[J]. IEEE Transactions on Communications, 2017, 65(8): 3571-3584.DOI:10.1109/TCOMM.2017.2699660. [3] Mao Y Y, You C S, Zhang J, et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.DOI:10.1109/COMST.2017.2745201. [4] Mach P, Becvar Z. Mobile edge computing: a survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656.DOI:10.1109/COMST.2017.26823. [5] You C S, Huang K B, Chae H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1397-1411.DOI:10.1109/TWC.2016.2633522. [6] Mao Y Y, Zhang J, Song S H, et al. Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(9): 5994-6009.DOI:10.1109/TWC.2017.2717986. [7] Chen X F, Zhang H G, Wu C, et al. Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2019, 6(3): 4005-4018.DOI:10.1109/JIOT.2018.2876279. [8] Min M H, Xiao L, Chen Y, et al. Learning-based computation offloading for IoT devices with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1930-1941.DOI:10.1109/TVT.2018.2890685. [9] Huang L, Bi S Z, Zhang Y J A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2020,19(11):2581-2593. DOI: 10.1109/TMC.2019.2928811. [10] 余翀,邱其文. 基于栅格地图的分层式机器人路径规划算法[J]. 中国科学院大学学报, 2013, 30(4): 528-538, 546.DOI:10.7523/j.issn.2095-6134.2013.04.015. [11] Cheung M H, Huang J W. DAWN: delay-aware Wi-Fi offloading and network selection[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(6): 1214-1223.DOI:10.1109/JSAC.2015.2416989. [12] Nicholson A J, Noble B D. BreadCrumbs: forecasting mobile connectivity[C]//MobiCom ′08:Proceedings of the 14th ACM International Conference on Mobile Computing and Networking. 2008: 46-57.DOI:10.1145/1409944.1409952. [13] Gambs S, Killijian M O, del Prado Cortez M N. Next place prediction using mobility Markov chains[C]//MPM ′12:Proceedings of the First Workshop on Measurement, Privacy, and Mobility. 2012: 1-6.DOI:10.1145/2181196.2181199. [14] Sutton R S, Barto A G. Reinforcement learning: an introduction[M]. 2nd ed.Cambridge,MA:The MIT Press,2018. [15] Watkins C J C H, Dayan P. Q-learning[J]. Machine Learning, 1992, 8(3/4): 279-292.DOI:10.1007/BF00992698. [16] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.DOI:10.1038/nature14236. [17] Zhu Z W, Jin S D, Yang Y, et al. Time reusing in D2D-enabled cooperative networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 3185-3200.DOI:10.1109/twc.2018.2808259. [18] Abadi M, Barham P, Chen J M, et al. Tensorflow: a system for large-scale machine learning[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016,abs/1605.08695. [19] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. 2011: 315-323. |