[1] Zhang C M, Wang J L, Chen X W, et al. Tunable ultraviolet source from fifth and seventh harmonic generated by mid-infrared pulses filamentation in air[J]. Laser Physics, 2009, 19(8):1793-1795. DOI:10.1134/S1054660X09150493. [2] Mitrofanov A V, Voronin A A, Mitryukovskiy S I, et al. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics[J]. Optics Letters, 2015, 40(9):2068-2071. DOI:10.1364/OL.40.002068. [3] Petit Y, Henin S, Nakaema W M, et al. 1-J white-light continuum from 100-TW laser pulses[J]. Physical Review A, 2011, 83:013805. DOI:10.1103/PhysRevA.83.013805. [4] Lu C H, Tsou Y J, Chen H Y, et al. Generation of intense supercontinuum in condensed media[J]. Optica, 2014, 1(6):400-406. DOI:10.1364/OPTICA.1.000400. [5] Xu S, Zheng Y, Liu Y, et al. Intensity clamping during dual-beam interference[J]. Laser Physics, 2010, 20(11):1968-1972. DOI:10.1134/S1054660X10210139. [6] Heins A, Guo C L. Spectral investigation of higher-order Kerr effects in a tight-focusing geometry[J]. Optics Express, 2013, 21(24):29401-29411. DOI:10.1364/OE.21.029401. [7] Kasparian J, Rodriguez M, Méjean G, et al. White-light filaments for atmospheric analysis[J]. Science, 2003, 301(5629):61-64. DOI:10.1126/science.1085020. [8] Xu H L, Daigle J F, Luo Q, et al. Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane[J]. Applied Physics B, 2006, 82(4):655-658. DOI:10.1007/s00340-005-2123-8. [9] Chin S L, Xu H L, Luo Q, et al. Filamentation "remote" sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 2009, 95(1):1-12. DOI:10.1007/s00340-009-3381-7. [10] Wolf J P. Short-pulse lasers for weather control[J]. Reports on Progress in Physics, 2018, 81(2):026001. DOI:10.1088/1361-6633/aa8488. [11] Produit T, Walch P, Herkommer C, et al. The laser lightning rod project[J]. European Physical Journal-applied Physics, 2021, 93(1):10504. DOI:10.1051/epjap/2020200243. [12] Herkommer C, Krötz P, Jung R, et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research[J]. Optics Express, 2020, 28(20):30164-30173. DOI:10.1364/OE.404185. [13] Schimmel G, Produit T, Mongin D, et al. Free space laser telecommunication through fog[J]. Optica, 2018, 5(10):1338-1341. DOI:10.1364/OPTICA.5.001338. [14] Schroeder M C, Larkin I, Produit T, et al. Molecular quantum wakes for clearing fog[J]. Optics Express, 2020, 28(8):11463-11471. DOI:10.1364/OE.389393. [15] Kotzagianni M, Couris S. Femtosecond laser induced breakdown for combustion diagnostics[J]. Applied Physics Letters, 2012, 100(26):264104. DOI:10.1063/1.4731781. [16] Baudelet M, Guyon L, Yu J, et al. Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 2006, 88(6):063901. DOI:10.1063/1.2170437. [17] Xi T T, Zhao Z J, Hao Z Q. Femtosecond laser filamentation with a microlens array in air[J]. Journal of the Optical Society of America B, 2015, 32(1):163-166. DOI:10.1364/JOSAB.32.000163. [18] Camino A, Hao Z Q, Liu X, et al. Control of laser filamentation in fused silica by a periodic microlens array[J]. Optics Express, 2013, 21(7):7908-7915. DOI:10.1364/OE.21.007908. [19] Hu Y Z, Nie J S, Sun K, et al. Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation[J]. Journal of the Optical Society of America B, 2016, 33(10):2144-2148. DOI:10.1364/JOSAB.33.002144. [20] Chen A M, Li S Y, Qi H X, et al. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse[J]. Optics Communications, 2017, 383:144-147. DOI:10.1016/j.optcom.2016.08.079. [21] Zhan L D, Xu M N, Xi T T, et al. Contributions of leading and tailing pulse edges to filamentation and supercontinuum generation of femtosecond pulses in air[J]. Physics of Plasmas, 2018, 25(10):103102. DOI:10.1063/1.5045783. [22] Li J, Tan W J, Si J H, et al. Control of the spatial characteristics of femtosecond laser filamentation in glass via feedback-based wavefront shaping with an annular phase mask[J]. Optics Express, 2021, 29(4):5972-5981. DOI:10.1364/OE.418334. [23] Geints Y E, Zemlyanov A A. Effect of high-power laser divergence on the plasma structural parameters during multiple filamentation in air[J]. Physical Review A, 2016, 93(6):063833. DOI:10.1103/PhysRevA.93.063833. [24] Hong Z F, Zhang Q B, Ali Rezvani S, et al. Extending plasma channel of filamentation with a multi-focal-length beam[J]. Optics Express, 2016, 24(4):4029-4041. DOI:10.1364/oe.24.004029. [25] Feng Z F, Li W, Yu C X, et al. Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air[J]. Optics Express, 2016, 24(6):6381-6390. DOI:10.1364/OE.24.006381. [26] Polynkin P, Kolesik M, Roberts A, et al. Generation of extended plasma channels in air using femtosecond Bessel beams[J]. Optics Express, 2008, 16(20):15733-15740. DOI:10.1364/OE.16.015733. [27] Akturk S, Zhou B, Franco M, et al. Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon[J]. Optics Communications, 2009, 282(1):129-134. DOI:10.1016/j.optcom.2008.09.048. [28] Ju L B, Huang T W, Xiao K D, et al. Controlling multiple filaments by relativistic optical vortex beams in plasmas[J]. Physical Review E, 2016, 94(3):033202. DOI:10.1103/PhysRevE.94.033202. [29] Porras M A, Carvalho M, Leblond H, et al. Stabilization of vortex beams in Kerr media by nonlinear absorption[J]. Physical Review A, 2016, 94(5):053810. DOI:10.1103/PhysRevA.94.053810. [30] Xu L T, Li D W, Chang J W, et al. Helical filaments array generated by femtosecond vortex beams with lens array in air[J]. Results in Physics, 2021, 26:104334. DOI:10.1016/j.rinp.2021.104334. [31] Fibich G, Gavish N. Critical power of collapsing vortices[J]. Physical Review A, 2008, 77(4):045803. DOI:10.1103/PhysRevA.77.045803. [32] Polynkin P, Ament C, Moloney J V. Self-focusing of ultraintense femtosecond optical vortices in air[J]. Physical Review Letters, 2013, 111(2):023901. DOI:10.1103/PhysRevLett.111.023901. [33] Rozas D, Law C T, Swartzlander G A. Propagation dynamics of optical vortices[J]. Journal of the Optical Society of America B, 1997, 14(11):3054-3065. DOI:10.1364/JOSAB.14.003054. [34] Cheng Y H, Wahlstrand J K, Jhajj N, et al. The effect of long timescale gas dynamics on femtosecond filamentation[J]. Optics Express, 2013, 21(4):4740-4751. DOI:10.1364/OE.21.004740. [35] Chang J W, Li D W, Xu L T, et al. Elongation of filamentation and enhancement of supercontinuum generation by a preformed air density hole[J]. Optics Express, 2022, 30(10):16987-16995. DOI:10.1364/OE.458128. [36] Vinçotte A, Bergé L. Femtosecond optical vortices in air[J]. Physical Review Letters, 2005, 95(19):193901. DOI:10.1103/PhysRevLett.95.193901. [37] Xi T T, Zhao Z J, Hao Z Q. Filamentation of femtosecond laser pulses with spatial chirp in air[J]. Journal of the Optical Society of America B, 2014, 31(2):321-324. DOI:10.1364/JOSAB.31.000321. [38] Wahlstrand J K, Jhajj N, Milchberg H M. Controlling femtosecond filament propagation using externally driven gas motion[J]. Optics Letters, 2019, 44(2):199-202. DOI:10.1364/OL.44.000199. |