[1] Lappa M. Rotating thermal flows in natural and industrial processes[M]. Chichester, Sussex: John Wiley & Sons, 2012: 413-422. DOI:10.1002/9781118342411. [2] Viazzo S, Poncet S. Numerical simulation of the flow stability in a high aspect ratio Taylor-Couette system submitted to a radial temperature gradient[J]. Computers & Fluids, 2014, 101: 15-26. DOI:10.1016/j.compfluid.2014.05.025. [3] Togun H, Abdulrazzaq T, Kazi S N, et al. A review of studies on forced, natural and mixed heat transfer to fluid and nanofluid flow in an annular passage[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 835-856. DOI:10.1016/j.rser.2014.07.008. [4] Lopez J M, Marques F, Avila M. The Boussinesq approximation in rapidly rotating flows[J]. Journal of Fluid Mechanics, 2013, 737: 56-77. DOI:10.1017/jfm.2013.558. [5] Shi L, Hof B, Rampp M, et al. Hydrodynamic turbulence in quasi-Keplerian rotating flows[J]. Physics of Fluids, 2017, 29(4): 044107. DOI:10.1063/1.4981525. [6] Snyder H A, Karlsson S K F. Experiments on the stability of Couette motion with a radial thermal gradient[J]. Physics of Fluids, 1964, 7(10): 1696-1706. DOI:10.1063/1.1711076. [7] Ali M, Weidman P D. On the stability of circular Couette flow with radial heating[J]. Journal of Fluid Mechanics, 1990, 220: 53-84. DOI:10.1017/S0022112090003184. [8] Yoshikawa H N, Nagata M, Mutabazi I. Instability of the vertical annular flow with a radial heating and rotating inner cylinder[J]. Physics of Fluids, 2013, 25(11): 114104. DOI:10.1063/1.4829429. [9] Ball K S, Farouk B. A flow visualization study of the effects of buoyancy on Taylor vortices[J]. Physics of Fluids A: Fluid Dynamics, 1989, 1(9): 1502-1507. DOI:10.1063/1.857328. [10] Ball K S, Farouk B, Dixit V C. An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder[J]. International Journal of Heat and Mass Transfer, 1989, 32(8): 1517-1527. DOI:10.1016/0017-9310(89)90073-2. [11] Ball K S, Farouk B. Bifurcation phenomena in Taylor-Couette flow with buoyancy effects[J]. Journal of Fluid Mechanics, 1988, 197: 479-501. DOI:10.1017/S0022112088003337. [12] Kuo D C, Ball K S. Taylor-Couette flow with buoyancy: onset of spiral flow[J]. Physics of Fluids, 1997, 9(10): 2872-2884. DOI:10.1063/1.869400. [13] Lepiller V, Goharzadeh A, Prigent A, et al. Weak temperature gradient effect on the stability of the circular Couette flow[J]. The European Physical Journal B, 2008, 61(4): 445-455. DOI:10.1140/epjb/e2008-00105-2. [14] Kang C, Yang K S, Mutabazi I. Thermal effect on large-aspect-ratio Couette-Taylor system: numerical simulations[J]. Journal of Fluid Mechanics, 2015, 771: 57-78. DOI:10.1017/jfm.2015.151. [15] Lopez J M, Marques F, Avila M. Conductive and convective heat transfer in fluid flows between differentially heated and rotating cylinders[J]. International Journal of Heat and Mass Transfer, 2015, 90: 959-967. DOI:10.1016/j.ijheatmasstransfer.2015.07.026. [16] Kang C, Meyer A, Mutabazi I, et al. Radial buoyancy effects on momentum and heat transfer in a circular Couette flow[J]. Physical Review Fluids, 2017, 2(5): 053901. DOI:10.1103/PhysRevFluids.2.053901. [17] Leng X Y, Zhong J Q. Mutual coherent structures for heat and angular momentum transport in turbulent Taylor-Couette flows[J]. Physical Review Fluids, 2022, 7(4): 043501. DOI:10.1103/PhysRevFluids.7.043501. [18] Li Y R, Hu Y P, Ouyang Y Q, et al. Flow state multiplicity in Rayleigh-Bénard convection of cold water with density maximum in a cylinder of aspect ratio 2[J]. International Journal of Heat and Mass Transfer, 2015, 86: 244-257. DOI:10.1016/j.ijheatmasstransfer.2015.01.147. [19] Large E, Andereck C D. Penetrative Rayleigh-Bénard convection in water near its maximum density point[J]. Physics of Fluids, 2014, 26(9): 094101. DOI:10.1063/1.4895063. [20] Huang X J, Li Y R, Zhang L, et al. Turbulent Rayleigh-Bénard convection of cold water near its maximum density in a vertical cylindrical container[J]. International Journal of Heat and Mass Transfer, 2018, 116: 185-193. DOI:10.1016/j.ijheatmasstransfer.2017.09.021. [21] Quintino A, Ricci E, Grignaffini S, et al. Heat transfer correlations for natural convection in inclined enclosures filled with water around its density-inversion point[J]. International Journal of Thermal Sciences, 2017, 116: 310-319. DOI:10.1016/j.ijthermalsci.2017.03.008. [22] Seki N, Fukusako S, Nakaoka M. Experimental study on natural convection heat transfer with density inversion of water between two horizontal concentric cylinders[J]. Journal of Heat Transfer, 1975, 97(4): 556-561. DOI:10.1115/1.3450430. [23] Nguyen T H, Vasseur P, Robillard L. Natural convection between horizontal concentric cylinders with density inversion of water for low Rayleigh numbers[J]. International Journal of Heat and Mass Transfer, 1982, 25(10): 1559-1568. DOI:10.1016/0017-9310(82)90034-5. [24] Raghavarao C V, Sanyasiraju Y V S S. Natural convection heat transfer of cold water between concentric cylinders for high Rayleigh numbers:a numerical study[J]. International Journal of Engineering Science, 1994, 32(9): 1437-1450. DOI:10.1016/0020-7225(94)90122-8. [25] Li Y R, Yuan X F, Wu C M, et al. Natural convection of water near its density maximum between horizontal cylinders[J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2550-2559. DOI:10.1016/j.ijheatmasstransfer.2011.02.006. [26] Li Y R, Hu Y P, Yuan X F. Three-dimensional numerical simulation of natural convection of water near its density maximum in a horizontal annulus[J]. International Journal of Thermal Sciences, 2013, 71: 274-282. DOI:10.1016/j.ijthermalsci.2013.04.023. [27] Lin D S, Nansteel M W. Natural convection in a vertical annulus containing water near the density maximum[J]. Journal of Heat Transfer, 1987, 109(4): 899-905. DOI:10.1115/1.3248201. [28] Ho C J, Lin Y H. Natural convection of cold water in a vertical annulus with constant heat flux on the inner wall[J]. Journal of Heat Transfer, 1990, 112(1): 117-123. DOI:10.1115/1.2910332. [29] Ho C J, Tu F J. Transition to oscillatory natural convection of cold water in a vertical annulus[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1559-1572. DOI:10.1016/S0017-9310(97)00224-X. [30] Ho C J, Tu F J. Laminar mixed convection of cold water in a vertical annulus with a heated rotating inner cylinder[J]. Journal of Heat Transfer, 1992, 114(2): 418-424. DOI:10.1115/1.2911290. [31] Ho C J, Tu F J. An investigation of transient mixed convection heat transfer of cold water in a tall vertical annulus with a heated rotating inner cylinder[J]. International Journal of Heat and Mass Transfer, 1993, 36(11): 2847-2859. DOI:10.1016/0017-9310(93)90104-E. [32] Teng H, Liu N S, Lu X Y, et al. Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient[J]. Physics of Fluids, 2015, 27(12): 125101. DOI:10.1063/1.4935700. [33] Gebhart B, Mollendorf J C. A new density relation for pure and saline water[J]. Deep Sea Research, 1977, 24(9): 831-848. DOI:10.1016/0146-6291(77)90475-1. [34] Zhang Y, Cao Y H. A numerical study on the non-Boussinesq effect in the natural convection in horizontal annulus[J]. Physics of Fluids, 2018, 30(4): 040902. DOI:10.1063/1.5010864. [35] Usman M, Son J H, Park I S. A low-Rayleigh transition into chaos for natural convection inside a horizontal annulus at Prandtl number 0.1[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121658. DOI:10.1016/j.ijheatmasstransfer.2021.121658. [36] Tuliszka-Sznitko E, Kiełczewski K. The numerical simulation of Taylor-Couette flow with radial temperature gradient[C]//Journal of Physics: Conference Series. IOP Publishing, 2016, 760: 012035. DOI:10.1088/1742-6596/760/1/012035. [37] Lopez J M, Marques F. Impact of centrifugal buoyancy on strato-rotational instability[J]. Journal of Fluid Mechanics, 2020, 890: A9. DOI:10.1017/jfm.2020.135. [38] Czarny O, Serre E, Bontoux P, et al. Interaction of wavy cylindrical Couette flow with endwalls[J]. Physics of Fluids, 2004, 16(4): 1140-1148. DOI:10.1063/1.1652671. |