Journal of University of Chinese Academy of Sciences ›› 2026, Vol. 43 ›› Issue (1): 115-124.DOI: 10.7523/j.ucas.2024.041
• Electronics and Computer Science • Previous Articles Next Articles
Haochen HE, Zheng FANG, Zhengda LU, Jun XIAO(
), Ying WANG
Received:2024-03-01
Revised:2024-05-07
Online:2026-01-15
Contact:
Jun XIAO
CLC Number:
Haochen HE, Zheng FANG, Zhengda LU, Jun XIAO, Ying WANG. PT-MFR: a CAD model machining feature recognition method based on Point Transformer[J]. Journal of University of Chinese Academy of Sciences, 2026, 43(1): 115-124.
| 网络 | 语义分割 | 实例分割 | ||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| Cao 等[ | 53.44 | 33.34 | 43.90 | — | — | — |
| Hierarchical CADNet[ | 83.53 | 83.63 | 72.65 | — | — | — |
| ASIN[ | 78.13 | 76.44 | 65.09 | 10.88 | 6.81 | 5.77 |
| AAGNet[ | 88.40 | 89.07 | 79.99 | 53.20 | 60.52 | 55.56 |
| PT-MFR | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
Table 1 Results of the comparative experiment
| 网络 | 语义分割 | 实例分割 | ||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| Cao 等[ | 53.44 | 33.34 | 43.90 | — | — | — |
| Hierarchical CADNet[ | 83.53 | 83.63 | 72.65 | — | — | — |
| ASIN[ | 78.13 | 76.44 | 65.09 | 10.88 | 6.81 | 5.77 |
| AAGNet[ | 88.40 | 89.07 | 79.99 | 53.20 | 60.52 | 55.56 |
| PT-MFR | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
| 特征提取模块 | 语义分割 | 实例分割 | ||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| PointNet[ | 72.10 | 75.53 | 60.97 | 40.54 | 53.95 | 47.14 |
| DGCNN[ | 80.69 | 82.45 | 71.95 | 34.46 | 50.22 | 44.08 |
| Sparse Conv[ | 74.97 | 73.59 | 61.91 | 41.70 | 54.10 | 47.93 |
| PT-MFR | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
Table 2 Results of the feature extraction module ablation experiment
| 特征提取模块 | 语义分割 | 实例分割 | ||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| PointNet[ | 72.10 | 75.53 | 60.97 | 40.54 | 53.95 | 47.14 |
| DGCNN[ | 80.69 | 82.45 | 71.95 | 34.46 | 50.22 | 44.08 |
| Sparse Conv[ | 74.97 | 73.59 | 61.91 | 41.70 | 54.10 | 47.93 |
| PT-MFR | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
| 面位置 | 语义分割 | 实例分割 | ||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| 删除面位置 | 89.50 | 87.82 | 81.57 | 37.54 | 51.26 | 45.43 |
| PT-MFR | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
Table 3 Results of the face position ablation experiment
| 面位置 | 语义分割 | 实例分割 | ||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| 删除面位置 | 89.50 | 87.82 | 81.57 | 37.54 | 51.26 | 45.43 |
| PT-MFR | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
| 损失函数 | 语义分割 | 实例分割 | ||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| MSE损失 | 85.12 | 87.71 | 79.35 | 10.07 | 6.69 | 5.33 |
| PT-MFR | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
Table 4 Results of the loss function ablation experiment
| 损失函数 | 语义分割 | 实例分割 | ||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| MSE损失 | 85.12 | 87.71 | 79.35 | 10.07 | 6.69 | 5.33 |
| PT-MFR | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
| 语义分割 | 实例分割 | |||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| 1∶1 | 90.26 | 89.63 | 82.76 | 59.21 | 69.33 | 62.21 |
| 1∶5 | 90.94 | 89.87 | 83.68 | 59.91 | 69.11 | 62.16 |
| 1∶10 | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
| 1∶20 | 86.49 | 81.85 | 77.20 | 61.83 | 71.06 | 64.04 |
| 1∶50 | 86.92 | 82.97 | 78.02 | 60.78 | 70.13 | 63.16 |
Table 5 Results of loss function weight ablationexperiment
| 语义分割 | 实例分割 | |||||
|---|---|---|---|---|---|---|
| mIoU | Acc | F1 | mIoU | |||
| 1∶1 | 90.26 | 89.63 | 82.76 | 59.21 | 69.33 | 62.21 |
| 1∶5 | 90.94 | 89.87 | 83.68 | 59.91 | 69.11 | 62.16 |
| 1∶10 | 90.36 | 89.29 | 82.81 | 60.56 | 70.25 | 63.24 |
| 1∶20 | 86.49 | 81.85 | 77.20 | 61.83 | 71.06 | 64.04 |
| 1∶50 | 86.92 | 82.97 | 78.02 | 60.78 | 70.13 | 63.16 |
| [1] | 边培莹. 机械CAD/CAM原理及应用[M]. 北京: 机械工业出版社, 2020. |
| [2] | 王秋明, 高慧颖, 刘科成. 基于过程方法的现代集成制造模式下质量管理系统模型[J]. 中国科学院研究生院学报, 2012, 29(5): 686-692. DOI: 10.7523/j.issn.2095-6134.2012.5.016 . |
| [3] | Shi Y, Zhang Y C, Xia K S, et al. A critical review of feature recognition techniques[J]. Computer-Aided Design and Applications, 2020, 17(5): 861-899. DOI: 10.14733/cadaps.2020.861-899 . |
| [4] | Zhang H, Zhang S S, Zhang Y J, et al. Machining feature recognition based on a novel multi-task deep learning network[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102369. DOI: 10.1016/j.rcim.2022.102369 . |
| [5] | 王泽隆, 徐向辉, 张雷. 基于仿真SAR图像深度迁移学习的自动目标识别[J]. 中国科学院大学学报, 2020, 37(4): 516-524. DOI: 10.7523/j.issn.2095-6134.2020.04.011 . |
| [6] | 孟曦婷, 计璐艳, 赵永超, 等. 基于深度学习的多尺度导弹发射井目标检测[J]. 中国科学院大学学报, 2021, 38(6): 800-808. DOI: 10.7523/j.issn.2095-6134.2021.06.010 . |
| [7] | Zhang Y, Zhang Y S, He K W, et al. Intelligent feature recognition for STEP-NC-compliant manufacturing based on artificial bee colony algorithm and back propagation neural network[J]. Journal of Manufacturing Systems, 2022, 62: 792-799. DOI: 10.1016/j.jmsy.2021.01.018 . |
| [8] | Colligan A R, Robinson T T, Nolan D C, et al. Hierarchical CADNet: learning from B-reps for machining feature recognition[J]. Computer-Aided Design, 2022, 147: 103226. DOI: 10.1016/j.cad.2022.103226 . |
| [9] | Shi P Z, Qi Q F, Qin Y C, et al. Intersecting machining feature localization and recognition via single shot multibox detector[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3292-3302. DOI: 10.1109/TII.2020.3030620 . |
| [10] | Shi P Z, Qi Q F, Qin Y C, et al. Highly interacting machining feature recognition via small sample learning[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102260. DOI: 10.1016/j.rcim.2021 . |
| [11] | Zhang Z B, Jaiswal P, Rai R. FeatureNet: machining feature recognition based on 3D convolution neural network[J]. Computer-Aided Design, 2018, 101: 12-22. DOI: 10.1016/j.cad.2018.03.006 . |
| [12] | Shi Y, Zhang Y C, Harik R. Manufacturing feature recognition with a 2D convolutional neural network[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 30: 36-57. DOI: 10.1016/j.cirpj.2020.04.001 . |
| [13] | Wu H J, Lei R S, Peng Y B, et al. AAGNet: a graph neural network towards multi-task machining feature recognition[J]. Robotics and Computer-Integrated Manufacturing, 2024, 86: 102661. DOI: 10.1016/j.rcim.2023.102661 . |
| [14] | Wu X Y, Lao Y X, Jiang L, et al. Point transformer V2: grouped vector attention and partition-based pooling[EB/OL]. arXiv 2022: 2210.05666.(2022-10-11)[2024-04-28]. . |
| [15] | Zhao H S, Jiang L, Jia J Y, et al. Point transformer[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2021: 16239-16248. DOI: 10.1109/ICCV48922.2021.01595 . |
| [16] | Wu X Y, Jiang L, Wang P S, et al. Point transformer V3: simpler, faster, stronger[EB/OL]. arXiv 2023: 2312.10035. (2023-12-15)[2024-04-28]. . |
| [17] | Ji Q, Marefat M M. Bayesian approach for extracting and identifying features[J]. Computer-Aided Design, 1995, 27(6): 435-454. DOI: 10.1016/0010-4485(95)00017-L . |
| [18] | Wang Q M, Yu X H. Ontology based automatic feature recognition framework[J]. Computers in Industry, 2014, 65(7): 1041-1052. DOI: 10.1016/j.compind.2014.04.004 . |
| [19] | Zhang Y Z, Luo X F, Zhang B Y, et al. Semantic approach to the automatic recognition of machining features[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1): 417-437. DOI: 10.1007/s00170-016-9056-8 . |
| [20] | Mandorli F, Borgo S, Wiejak P. From form features to semantic features in existing MCAD: an ontological approach[J]. Advanced Engineering Informatics, 2020, 44: 101088. DOI: 10.1016/j.aei.2020.101088 . |
| [21] | Trika S N, Kashyap R L. Geometric reasoning for extraction of manufacturing features in iso-oriented polyhedrons[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(11): 1087-1100. DOI: 10.1109/34.334388 . |
| [22] | Li Y G, Ding Y F, Mou W P, et al. Feature recognition technology for aircraft structural parts based on a holistic attribute adjacency graph[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(2): 271-278. DOI: 10.1243/09544054jem1634 . |
| [23] | 刘云华, 陈立平, 钟毅芳, 等. 基于痕迹的特征模型解释技术研究[J]. 计算机学报, 2000, 23(9): 960-965. DOI: 10.3321/j.issn:0254-4164.2000.09.013 . |
| [24] | Li Z, Lin J, Zhou D C, et al. Local symmetry based hint extraction of B-rep model for machining feature recognition[C]//ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 26–29, 2018, Quebec City, Quebec, Canada. 2018 DOI: 10.1115/DETC2018-85509 . |
| [25] | Kim B C, Mun D. Stepwise volume decomposition for the modification of B-rep models[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(9): 1393-1403. DOI: 10.1007/s00170-014-6210-z . |
| [26] | Kataraki P S, Abu Mansor M S. Auto-recognition and generation of material removal volume for regular form surface and its volumetric features using volume decomposition method[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5): 1479-1506. DOI: 10.1007/s00170-016-9394-6 . |
| [27] | Rameshbabu V, Shunmugam M S. Hybrid feature recognition method for setup planning from STEP AP-203[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(2): 393-408. DOI: 10.1016/j.rcim.2007.09.014 . |
| [28] | Guo L, Zhou M, Lu Y Q, et al. A hybrid 3D feature recognition method based on rule and graph[J]. International Journal of Computer Integrated Manufacturing, 2021, 34(3): 257-281. DOI: 10.1080/0951192x.2020.1858507 . |
| [29] | Cao W J, Robinson T, Hua Y, et al. Graph representation of 3D CAD models for machining feature recognition with deep learning[C]//ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 17–19, 2020, Virtual, Online. 2020 DOI: 10.1115/DETC2020-22355 . |
| [30] | Jian C F, Li M, Qiu K Y, et al. An improved NBA-based STEP design intention feature recognition[J]. Future Generation Computer Systems, 2018, 88: 357-362. DOI: 10.1016/j.future.2018.05.033 . |
| [31] | Yeo C, Kim B C, Cheon S, et al. Machining feature recognition based on deep neural networks to support tight integration with 3D CAD systems[J]. Scientific Reports, 2021, 11(1): 22147. DOI: 10.1038/s41598-021-01313-3 . |
| [32] | 石叶楠, 郑国磊. 三种用于加工特征识别的神经网络方法综述[J]. 航空学报, 2019, 40(9): 022840. DOI: 10.7527/S1000-6893.2019.22840 . |
| [33] | Yao X H, Wang D, Yu T, et al. A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models[J]. Journal of Intelligent Manufacturing, 2023, 34(6): 2599-2610. DOI: 10.1007/s10845-022-01939-8 . |
| [34] | Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. arXiv 2017: 1706.02413.(2017-06-07)[2024-04-28]. . |
| [35] | Charles R Q, Hao S, Mo K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 77-85. DOI: 10.1109/CVPR.2017.16 . |
| [36] | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[EB/OL]. arXiv 2017: 1706.03762. (2017-06-12)[2024-04-28]. . |
| [37] | Kingma D P, Ba J. Adam: a method for stochastic optimization[EB/OL]. arXiv 2014: 1412.6980.(2014-12-22)[2024-04-28]. . |
| [38] | Wang Y, Sun Y B, Liu Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 146. DOI: 10.1145/3326362 . |
| [39] | Graham B, Engelcke M, van der Maaten L. 3D semantic segmentation with submanifold sparse convolutional networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 9224-9232. DOI: 10.1109/CVPR.2018.00961 . |
| [1] | FAN Tao, ZHAN Xu. Voiceprint recognition based on fused MGCC and CNN-SE-BiGRU features [J]. Journal of University of Chinese Academy of Sciences, 2025, 42(6): 832-842. |
| [2] | ZHOU Qingze, GUO Qing. Multispectral remote sensing image pan-sharpening method based on multi-residual network [J]. Journal of University of Chinese Academy of Sciences, 2025, 42(4): 565-575. |
| [3] | WANG Yixuan, ZHANG Huai, SHI Yaolin, CHENG Shu. Medium-term prediction of earthquakes in Southern California using LSTM neural network [J]. Journal of University of Chinese Academy of Sciences, 2025, 42(2): 199-208. |
| [4] | HU Yinhan, GUO Tiande, HAN Congying. Solutions of cross-entropy loss with spectral decoupling regularization [J]. Journal of University of Chinese Academy of Sciences, 2025, 42(2): 268-275. |
| [5] | WANG Zhanpeng, WANG Lijin. Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks [J]. Journal of University of Chinese Academy of Sciences, 2025, 42(1): 20-25. |
| [6] | YUAN Ming, ZHAO Tong. A framework of graph classification with self-supervised heterogeneous graph neural network [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(6): 830-841. |
| [7] | GUO Sujie, GUO Chongbin. A pose estimation algorithm for spatial non-cooperative targets based on point cloud registration [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(5): 677-686. |
| [8] | HUANG Yulin, LIANG Lei, LI Weijun, XI Xiaohuan. Point cloud compression of deep learning based on multi-scale feature and attention mechanism [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(5): 687-694. |
| [9] | LI Xueyuan, HAN Congying. Solving quadratic assignment problem based on actor-critic framework [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(2): 275-284. |
| [10] | PAN Chao, LI Lianghai, CAO Haiyi, ZHAO Yiming, YUAN Yifei, HAN Xiaoshuang. Single photon point cloud denoising method based on density and local statistics [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(2): 268-274. |
| [11] | LUO Zhongkai, ZHANG Libo. Learning path planning methods [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(1): 11-27. |
| [12] | DONG Wenhao, ZHANG Huai. Lithology recognition of cuttings based on transfer learning [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(6): 743-750. |
| [13] | LI Xiaoyu, ZHOU Mei, WANG Jinhu, YAO Qiangqiang. Road marking detection and extraction method based on neighborhood density and Kalman filter [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(6): 800-809. |
| [14] | LIU Zijian, JIANG Quanjiang, LIU Huijie. An adaptive limiting method in LEO satellite multi-beam system based on neural network [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(5): 670-676. |
| [15] | XIAO Jun, SHI Guangtian. Three-dimensional point cloud denoising [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(5): 577-595. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn