Journal of University of Chinese Academy of Sciences ›› 2023, Vol. 40 ›› Issue (5): 577-595.DOI: 10.7523/j.ucas.2022.038
• Review Article • Next Articles
XIAO Jun, SHI Guangtian
Received:
2022-03-07
Revised:
2022-04-13
Online:
2023-09-15
CLC Number:
XIAO Jun, SHI Guangtian. Three-dimensional point cloud denoising[J]. Journal of University of Chinese Academy of Sciences, 2023, 40(5): 577-595.
Add to citation manager EndNote|Ris|BibTeX
[1] Wang Y, Zhang S S, Wan B L, et al. Point cloud and visual feature-based tracking method for an augmented reality-aided mechanical assembly system[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(9-12):2341-2352. DOI:10.1007/s00170-018-2575-8. [2] Mahmood B, Han S U, Lee D E. BIM-based registration and localization of 3D point clouds of indoor scenes using geometric features for augmented reality[J]. Remote Sensing, 2020, 12(14):2302. DOI:10.3390/rs12142302. [3] Zermas D, Izzat I, Papanikolopoulos N. Fast segmentation of 3D point clouds:a paradigm on LiDAR data for autonomous vehicle applications[C]//2017 IEEE International Conference on Robotics and Automation. May 29-June 3, 2017, Singapore. IEEE, 2017:5067-5073. DOI:10.1109/ICRA.2017.7989591. [4] Yuan W T, Khot T, Held D, et al. PCN:point completion network[C]//2018 International Conference on 3D Vision (3DV). September 5-8, 2018, Verona, Italy. IEEE, 2018:728-737. DOI:10.1109/3DV.2018.00088. [5] Wen X, Li T Y, Han Z Z, et al. Point cloud completion by skip-attention network with hierarchical folding[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:1936-1945. DOI:10.1109/CVPR42600.2020.00201. [6] Huang Z T, Yu Y K, Xu J W, et al. PF-net:point fractal network for 3D point cloud completion[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:7659-7667. DOI:10.1109/CVPR42600.2020.00768. [7] Landrieu L, Simonovsky M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018:4558-4567. DOI:10.1109/CVPR.2018.00479. [8] Hu Q Y, Yang B, Xie L H, et al. RandLA-net:efficient semantic segmentation of large-scale point clouds[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:11105-11114. DOI:10.1109/CVPR42600.2020.01112. [9] Wang Y, Sun Y B, Liu Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5):1-12. DOI:10.1145/3326362. [10] Chen W K, Han X G, Li G B, et al. Deep RBFNet:point cloud feature learning using radial basis functions[EB/OL]. arXiv:1812.04302v2(2019-04-06)[2022-03-07]. https://arxiv.org/abs/1812.04302. [11] Shi S S, Wang X G, Li H S. PointRCNN:3D object proposal generation and detection from point cloud[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:770-779. DOI:10.1109/CVPR.2019.00086. [12] Lang A H, Vora S, Caesar H, et al. PointPillars:fast encoders for object detection from point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:12689-12697. DOI:10.1109/CVPR.2019.01298. [13] Rusu R B, Cousins S. 3D is here:point cloud library (PCL)[C]//2011 IEEE International Conference on Robotics and Automation. May 9-13, 2011, Shanghai, China. IEEE, 2011:1-4. DOI:10.1109/ICRA.2011.5980567. [14] Kolluri R. Provably good moving least squares[J]. ACM Transactions on Algorithms, 2008, 4(2):1-25. DOI:10.1145/1361192.1361195. [15] Guennebaud G, Gross M. Algebraic point set surfaces[J]. ACM Transactions on Graphics, 2007, 26(3):23-es. DOI:10.1145/1239451.1239474. [16] Öztireli A C, Guennebaud G, Gross M. Feature preserving point set surfaces based on non-linear kernel regression[J]. Computer Graphics Forum, 2009, 28(2):493-501. DOI:10.1111/j.1467-8659.2009.01388.x. [17] Lipman Y, Cohen-Or D, Levin D, et al. Parameterization-free projection for geometry reconstruction[J]. ACM Transactions on Graphics, 2007, 26(3):22. DOI:10.1145/1276377.1276405. [18] Huang H, Li D, Zhang H, et al. Consolidation of unorganized point clouds for surface reconstruction[J]. ACM Transactions on Graphics, 2009, 28(5):1-7. DOI:10.1145/1618452.1618522. [19] Huang H, Wu S H, Gong M L, et al. Edge-aware point set resampling[J]. ACM Transactions on Graphics, 2013, 32(1):1-12. DOI:10.1145/2421636.2421645. [20] Avron H, Sharf A, Greif C, et al. l1-sparse reconstruction of sharp point set surfaces[J]. ACM Transactions on Graphics, 2010, 29(5):1-12. DOI:10.1145/1857907.1857911. [21] Sun Y J, Schaefer S, Wang W P. Denoising point sets via L0 minimization[J]. Computer Aided Geometric Design, 2015, 35/36:2-15. DOI:10.1016/j.cagd.2015.03.011. [22] Mattei E, Castrodad A. Point cloud denoising via moving RPCA[J]. Computer Graphics Forum, 2017, 36(8):123-137. DOI:10.1111/cgf.13068. [23] Yadav S K, Reitebuch U, Skrodzki M, et al. Constraint-based point set denoising using normal voting tensor and restricted quadratic error metrics[J]. Computers & Graphics, 2018, 74:234-243. DOI:10.1016/j.cag.2018.05.014. [24] Liu Z, Xiao X W, Zhong S S, et al. A feature-preserving framework for point cloud denoising[J]. Computer-Aided Design, 2020, 127:102857. DOI:10.1016/j.cad.2020.102857. [25] Schoenenberger Y, Paratte J, Vandergheynst P. Graph-based denoising for time-varying point clouds[C]//2015 3DTV-Conference:The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON). July 8-10, 2015, Lisbon, Portugal. IEEE, 2015:1-4. DOI:10.1109/3DTV.2015.7169366. [26] Gao X, Hu W, Guo Z M. Graph-based point cloud denoising[C]//2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). September 13-16, 2018, Xi'an, China. IEEE, 2018:1-6. DOI:10.1109/BigMM.2018.8499090. [27] Roveri R, Öztireli A C, Pandele I, et al. PointProNets:consolidation of point clouds with convolutional neural networks[J]. Computer Graphics Forum, 2018, 37(2):87-99. DOI:10.1111/cgf.13344. [28] Rakotosaona M J, la Barbera V, Guerrero P, et al. PointCleanNet:learning to denoise and remove outliers from dense point clouds[J]. Computer Graphics Forum, 2020, 39(1):185-203. DOI:10.1111/cgf.13753. [29] Zhang D B, Lu X Q, Qin H, et al. Pointfilter:point cloud filtering via encoder-decoder modeling[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(3):2015-2027. DOI:10.1109/TVCG.2020.3027069. [30] Casajus P H, Ritschel T, Ropinski T. Total denoising:unsupervised learning of 3D point cloud cleaning[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea (South). IEEE, 2019:52-60. DOI:10.1109/ICCV.2019.00014. [31] Shepard D. A two-dimensional interpolation function for irregularly-spaced data[C]//ACM'68:Proceedings of the 1968 23rd ACM national conference. New York, NY:Association for Computing Machinery, 1968:517-524. DOI:10.1145/800186.810616. [32] Shen C, O'Brien J F, Shewchuk J R. Interpolating and approximating implicit surfaces from polygon soup[J]. ACM Transactions on Graphics, 2004, 23(3):896-904. DOI:10.1145/1015706.1015816. [33] Guennebaud G, Germann M, Gross M. Dynamic sampling and rendering of algebraic point set surfaces[J]. Computer Graphics Forum, 2008, 27(2):653-662. DOI:10.1111/j.1467-8659.2008.01163.x. [34] Huang Z Y, Carr N, Ju T. Variational implicit point set surfaces[J]. ACM Transactions on Graphics, 2019, 38(4):1-13. DOI:10.1145/3306346.3322994. [35] Liao B, Xiao C X, Jin L Q, et al. Efficient feature-preserving local projection operator for geometry reconstruction[J]. Computer-Aided Design, 2013, 45(5):861-874. DOI:10.1016/j.cad.2013.02.003. [36] Preiner R, Mattausch O, Arikan M, et al. Continuous projection for fast L1 reconstruction[J]. ACM Transactions on Graphics, 2014, 33(4):1-13. DOI:10.1145/2601097.2601172. [37] Lu X Q, Wu S H, Chen H H, et al. GPF:GMM-inspired feature-preserving point set filtering[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(8):2315-2326. DOI:10.1109/TVCG.2017.2725948. [38] Candès E J, Li X D, Ma Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3):1-37. DOI:10.1145/1970392.1970395. [39] Chen H H, Wei M Q, Sun Y X, et al. Multi-patch collaborative point cloud denoising via low-rank recovery with graph constraint[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(11):3255-3270. DOI:10.1109/TVCG.2019.2920817. [40] Deutsch S, Ortega A, Medioni G. Manifold denoising based on spectral graph wavelets[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing. March 20-25, 2016, Shanghai, China. IEEE, 2016:4673-4677. DOI:10.1109/ICASSP.2016.7472563. [41] Dinesh C, Cheung G, Bajic I V, et al. Fast 3D point cloud denoising via bipartite graph approximation & total variation[EB/OL]. arXiv:1804.10831v1(2018-04-28)[2022-03-07]. https://arxiv.org/abs/1804.10831. [42] Zeng J, Cheung G, Ng M, et al. 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model[J]. IEEE Transactions on Image Processing, 2020, 29:3474-3489. DOI:10.1109/TIP.2019.2961429. [43] Hu W, Gao X, Cheung G, et al. Feature graph learning for 3D point cloud denoising[J]. IEEE Transactions on Signal Processing, 2020, 68:2841-2856. DOI:10.1109/TSP.2020.2978617. [44] Levin D. The approximation power of moving least-squares[J]. Mathematics of Computation, 1998, 67(224):1517-1531. DOI:10.1090/s0025-5718-98-00974-0. [45] Levin D. Mesh-independent surface interpolation[C]//Geometric Modeling for Scientific Visualization. Berlin, Germany:Springer-Verlag, 2004:37-49. DOI:10.1007/978-3-662-07443-5_3. [46] Alexa M, Behr J, Cohen-Or D, et al. Computing and rendering point set surfaces[J]. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(1):3-15. DOI:10.1109/TVCG.2003.1175093. [47] Amenta N, Kil Y J. The domain of a point set surfaces[C]//SPBG '04:Proceedings of the First Eurographics conference on Point-Based Graphics. Goslar, Germany:Eurographics Association, 2004:139-147. DOI:10.2312/SPBG/SPBG04/139-147. [48] Fleishman S, Cohen-Or D, Silva C T. Robust moving least-squares fitting with sharp features[J]. ACM Transactions on Graphics, 2005, 24(3):544-552. DOI:10.1145/1073204.1073227. [49] Alliez P, Cohen-Steiner D, Tong Y, et al. Voronoi-based variational reconstruction of unoriented point sets[C]//SGP'07:Proceedings of the fifth Eurographics symposium on Geometry processing, July 4-6, 2007, Barcelona, Spain. Goslar, Germany:Eurographics Association, 2007:39-48. [50] Walder C, Chapelle O, Schölkopf B. Implicit surface modelling as an eigenvalue problem[C]//ICML'05:Proceedings of the 22nd international conference on Machine learning. New York, NY:Association for Computing Machinery, 2005:936-939. DOI:10.1145/1102351.1102469. [51] Hoppe H, DeRose T, Duchamp T, et al. Surface reconstruction from unorganized points[C]//Proceedings of the 19th annual conference on Computer graphics and interactive techniques-SIGGRAPH'92. Not Known. New York:ACM Press, 1992:71-78. DOI:10.1145/133994.134011. [52] Jones T R, Durand F, Zwicker M. Normal improvement for point rendering[J]. IEEE Computer Graphics and Applications, 2004, 24(4):53-56. DOI:10.1109/MCG.2004.14. [53] Myronenko A, Song X B. Point set registration:coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12):2262-2275. DOI:10.1109/TPAMI.2010.46. [54] Candès E J, Romberg J, Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509. DOI:10.1109/TIT.2005.862083. [55] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1):6-18. DOI:10.1109/TIT.2005.860430. [56] Chan T F, Osher S, Shen J. The digital TV filter and nonlinear denoising[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2001, 10(2):231-241. DOI:10.1109/83.902288. [57] Xu L, Lu C W, Xu Y, et al. Image smoothing via L0 gradient minimization[J]. ACM Transactions on Graphics (TOG), 2011, 30(6):1-12. DOI:10.1145/2070781.2024208. [58] He L, Schaefer S. Mesh denoising via L0 minimization[J]. ACM Transactions on Graphics, 2013, 32(4):1-8. DOI:10.1145/2461912.2461965. [59] Candès E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6):717-772. DOI:10.1007/s10208-009-9045-5. [60] Candès E J, Tao T. The power of convex relaxation:Near-optimal matrix completion[J]. IEEE Transactions on Information Theory, 2010, 56(5):2053-2080. DOI:10.1109/TIT.2010.2044061. [61] Hotelling H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1933, 24(6):417-441. DOI:10.1037/h0071325. [62] Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3):37-52. DOI:10.1016/0169-7439(87)80084-9. [63] Mateos G, Giannakis G B. Robust PCA as bilinear decomposition with outlier-sparsity regularization[J]. IEEE Transactions on Signal Processing, 2012, 60(10):5176-5190. DOI:10.1109/TSP.2012.2204986. [64] Li B, Liu R S, Cao J J, et al. Online low-rank representation learning for joint multi-subspace recovery and clustering[J]. IEEE Transactions on Image Processing, 2018, 27(1):335-348. DOI:10.1109/TIP.2017.2760510. [65] Xie X Y, Wu J L, Liu G C, et al. Matrix recovery with implicitly low-rank data[J]. Neurocomputing, 2019, 334:219-226. DOI:10.1016/j.neucom.2019.01.030. [66] Yan H, Paynabar K, Shi J J. Image-based process monitoring using low-rank tensor decomposition[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(1):216-227. DOI:10.1109/TASE.2014.2327029. [67] Tsuchie S, Higashi M. Surface mesh denoising with normal tensor framework[J]. Graphical Models, 2012, 74(4):130-139. DOI:10.1016/j.gmod.2012.03.010. [68] Wei M Q, Liang L M, Pang W M, et al. Tensor voting guided mesh denoising[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2):931-945. DOI:10.1109/TASE.2016.2553449. [69] Park M K, Lee S J, Lee K H. Multi-scale tensor voting for feature extraction from unstructured point clouds[J]. Graphical Models, 2012, 74(4):197-208. DOI:10.1016/j.gmod.2012.04.008. [70] Zhang J, Cao J J, Liu X P, et al. Point cloud normal estimation via low-rank subspace clustering[J]. Computers & Graphics, 2013, 37(6):697-706. DOI:10.1016/j.cag.2013.05.008. [71] Zhang J, Cao J J, Liu X P, et al. Multi-normal estimation via pair consistency voting[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(4):1693-1706. DOI:10.1109/TVCG.2018.2827998. [72] Yadav S K, Reitebuch U, Polthier K. Mesh denoising based on normal voting tensor and binary optimization[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(8):2366-2379. DOI:10.1109/TVCG.2017.2740384. [73] Liu Z, Zhong S S, Xie Z, et al. A novel anisotropic second order regularization for mesh denoising[J]. Computer Aided Geometric Design, 2019, 71:190-201. DOI:10.1016/j.cagd.2019.04.013. [74] Zheng Y L, Li G Q, Xu X M, et al. Rolling normal filtering for point clouds[J]. Computer Aided Geometric Design, 2018, 62:16-28. DOI:10.1016/j.cagd.2018.03.004. [75] Hammond D K, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2):129-150. DOI:10.1016/j.acha.2010.04.005. [76] Osher S, Shi Z Q, Zhu W. Low dimensional manifold model for image processing[J]. SIAM Journal on Imaging Sciences, 2017, 10(4):1669-1690. DOI:10.1137/16m1058686. [77] Deutsch S, Ortega A, Medioni G. Robust denoising of piece-wise smooth manifolds[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing. April 15-20, 2018, Calgary, AB, Canada. IEEE, 2018:2786-2790. DOI:10.1109/ICASSP.2018.8462113. [78] Verdoja F, Thomas D, Sugimoto A. Fast 3D point cloud segmentation using supervoxels with geometry and color for 3D scene understanding[C]//2017 IEEE International Conference on Multimedia and Expo. July 10-14, 2017, Hong Kong, China. IEEE, 2017:1285-1290. DOI:10.1109/ICME.2017.8019382. [79] dal Mutto C, Zanuttigh P, Cortelazzo G M. Fusion of geometry and color information for scene segmentation[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(5):505-521. DOI:10.1109/JSTSP.2012.2194474. [80] Irfan M A, Magli E. Joint geometry and color point cloud denoising based on graph wavelets[J]. IEEE Access, 2021, 9:21149-21166. DOI:10.1109/ACCESS.2021.3054171. [81] Irfan M A, Magli E. 3D point cloud denoising using a joint geometry and color k-NN graph[C]//2020 28th European Signal Processing Conference (EUSIPCO). January 18-21, 2021, Amsterdam, Netherlands. IEEE, 2021:585-589. DOI:10.23919/Eusipco47968.2020.9287341. [82] Zhang X, Cheung G, Pang J H, et al. Graph-based depth denoising & dequantization for point cloud enhancement[EB/OL]. arXiv:2111.04946v1(2021-11-09)[2022-03-07]. https://arxiv.org/abs/2111.04946. [83] Pistilli F, Fracastoro G, Valsesia D, et al. Learning graph-convolutional representations for point cloud denoising[C]//ECCV 2020:16th European Conference, August 23-28, 2020, Glasgow, UK. Berlin, Heidelberg:Springer-Verlag, 2020:103-118. DOI:10.1007/978-3-030-58565-5_7. [84] Luo S T, Hu W. Differentiable manifold reconstruction for point cloud denoising[C]//MM'20:Proceedings of the 28th ACM International Conference on Multimedia, October 12-16, 2020, Seattle, WA, USA. New York, NY:Association for Computing Machinery, 2020:1330-1338. DOI:10.1145/3394171.3413727. [85] Luo S T, Hu W. Score-based point cloud denoising[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021:4563-4572. DOI:10.1109/ICCV48922.2021.00454. [86] Yu L Q, Li X Z, Fu C W, et al. Ec-net:an edge-aware point set consolidation network[EB/OL]. arXiv:1807.06010v1(2018-07-16)[2022-03-07]. https://arxiv.org/abs/1807.06010. [87] Regaya Y, Fadli F, Amira A. Point-Denoise:Unsupervised outlier detection for 3D point clouds enhancement[J]. Multimedia Tools and Applications, 2021, 80(18):28161-28177. DOI:10.1007/s11042-021-10924-x. [88] Zhang Z W, Cui P, Zhu W W. Deep learning on graphs:a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1):249-270. DOI:10.1109/TKDE.2020.2981333. [89] Zhou J, Cui G Q, Hu S D, et al. Graph neural networks:a review of methods and applications[J]. AI Open, 2020, 1:57-81. DOI:10.1016/j.aiopen.2021.01.001. [90] Simonovsky M, Komodakis N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:29-38. DOI:10.1109/CVPR.2017.11. [91] Hyvärinen A. Estimation of non-normalized statistical models by score matching[J]. Journal of Machine Learning Research, 2005, 6:695-709. [92] Vincent P. A connection between score matching and denoising autoencoders[J]. Neural Computation, 2011, 23(7):1661-1674. DOI:10.1162/NECO_a_00142. [93] Song Y, Ermon S. Generative modeling by estimating gradients of the data distribution[EB/OL]. arXiv:1907.05600v3(2020-10-10)[2022-03-07]. https://arxiv.org/abs/1907.05600. [94] Cai R J, Yang G D, Averbuch-Elor H, et al. Learning gradient fields for shape generation[EB/OL]. arXiv:2008.06520v2(2020-08-18)[2022-03-07]. https://arxiv.org/abs/2008.06520. [95] Yu L Q, Li X Z, Fu C W, et al. PU-net:Point cloud upsampling network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018:2790-2799. DOI:10.1109/CVPR.2018.00295. [96] Lehtinen J, Munkberg J, Hasselgren J, et al. Noise2Noise:learning image restoration without clean data[EB/OL]. arXiv:1803.04189v3(2018-10-29)[2022-03-07]. https://arxiv.org/abs/1803.04189. [97] Krull A, Buchholz T O, Jug F. Noise2Void:learning denoising from single noisy images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:2124-2132. DOI:10.1109/CVPR.2019.00223. [98] Batson J, Royer L. Noise2Self:blind denoising by self-supervision[EB/OL]. arXiv:1901.11365v2(2019-06-08)[2022-03-07]. https://arxiv.org/abs/1901.11365. [99] Hermosilla P, Ritschel T, Vázquez P P, et al. Monte Carlo convolution for learning on non-uniformly sampled point clouds[J]. ACM Transactions on Graphics, 2018, 37(6):1-12. DOI:10.1145/3272127.3275110. [100] Chang A X, Funkhouser T, Guibas L J, et al. ShapeNet:an information-rich 3D model repository[EB/OL]. arXiv:1512.03012v1(2015-12-09)[2022-03-07]. https://arxiv.org/abs/1512.03012. [101] Wu Z R, Song S R, Khosla A, et al. 3D ShapeNets:a deep representation for volumetric shapes[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. June 7-12, 2015, Boston, MA, USA. IEEE, 2015:1912-1920. DOI:10.1109/CVPR.2015.7298801. |
[1] | YAO Mufeng, ZAN Luyang, LI Baipeng, LI Qingting, CHEN Zhengchao. Building change detection from remote sensing images using CAR-Siamese net [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(3): 380-387. |
[2] | SHENG Xiaoguang, WANG Ying, ZHANG Yingwei, XIANG Ruoxi, FU Hongping. A weighted incremental learning scheme for effective academic warning [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(3): 422-432. |
[3] | CHEN Ruonan, PENG Ling, LIU Yufei, WEI Zhichao, LYU Beiru, CHEN Deyue. Road information extraction and application in the suburban mountainous area based on remote sensing images [J]. Journal of University of Chinese Academy of Sciences, 2022, 39(5): 658-667. |
[4] | GU Yumin, YAN Fuli. Building extraction based on UNet++ network with different backbones [J]. Journal of University of Chinese Academy of Sciences, 2022, 39(4): 512-523. |
[5] | LIN Daquan, FAN Rui, ZHANG Liangfeng. Image adversarial attack algorithm based on high-dimensional feature [J]. Journal of University of Chinese Academy of Sciences, 2022, 39(3): 421-431. |
[6] | ZHAO Minjun, ZHAO Yawei, ZHAO Yajie, LUO Gang. A new joint model for extracting overlapping relations based on deep learning [J]. Journal of University of Chinese Academy of Sciences, 2022, 39(2): 240-251. |
[7] | ZHOU Long, WANG Weiqiang, Lü Ke. FACR: a fast and accurate car recognizer [J]. Journal of University of Chinese Academy of Sciences, 2021, 38(1): 130-136. |
[8] | LI Sen, PENG Ling, HU Yuan, CHI Tianhe. FD-RCF-based boundary delineation of agricultural fields in high resolution remote sensing images [J]. , 2020, 37(4): 483-489. |
[9] | LU Kaixuan, LI Guoqing, CHEN Zhengchao, ZAN Luyang, LI Baipeng, GAO Jianwei. Extraction of steel plants based on optimized SSD network incorporating negative sample's multi channels [J]. , 2020, 37(3): 352-359. |
[10] | YAN Kai, SHEN Ting, CHEN Zhengchao, YAN Hongxuan. Automatic extraction of tailing pond based on SSD of deep learning [J]. , 2020, 37(3): 360-367. |
[11] | SONG Xuming, SHEN Yifei, SHI Yuanming. Intelligent mobile edge network caching based on deep learning [J]. , 2020, 37(1): 128-135. |
[12] | LIU Yang, LUO Chenxi, LUO Tiejian. Property analysis and validity verification algorithms of sum-product network [J]. , 2020, 37(1): 136-143. |
[13] | LI Zhong-Wei, NI Ming-Jiu. Variational level set methods for multiphase image segmentation based on piecewise constant [J]. , 2012, (6): 750-756. |
[14] | LI Qin, TAN Guan-Zheng. Bessel field pre-treatment based on wavelet analysis [J]. , 2012, 29(4): 524-528. |
[15] | Qiao Ming, Wang Xinlou, Zou Mouyan. A Regularized Anisotropic Diffusion for Speckle Reducing [J]. , 2005, 22(1): 24-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn