[1] 顾继光,林秋奇,胡韧,等. 土壤-植物系统中重金属污染的治理途径及其研究展望[J]. 土壤通报,2005,36(1):128-133.[2] 杨世勇,谢建春,刘登义. 镉的生物学效应及植物的耐性机制[J]. 生物学教学,2000,25(9):6-7.[3] Wu Q, Chen L, Wang G. Differences on Cd uptake and accumulation among rice cultivars and its mechanism[J]. Acta Ecologica Sinica, 1999, 1(1):104-107.[4] Wei S Q, Jarvis N. Modelling of cadium transport in soil-crop system[J]. Pedosphere, 2000, 10(1):1-9.[5] 刘刊,王波,权俊娇,等. 土壤重金属污染修复研究进展[J]. 北方园艺,2012,(22):189-194.[6] 张玉秀,于飞,张媛雅,等. 植物对重金属镉的吸收转运和累积机制[J]. 中国生态农业学报,2008,16(5):1 317-1 321.[7] Tanaka K, Fujimaki S, Fujiwara T, et al. Cadmium concentrations in the phloem sap of rice plants (Oryza saliva L.) treated with a nutrient solution containing cadmium (Environment)[J]. Soil Science and Plant Nutrition, 2003, 49(2):311-313.[8] 张标金,张祥喜,罗广林. 与植物镉吸收转运相关的主要基因家族[J]. 基因组学与应用生物学,2013,32(1):127-134.[9] Baxter I, Tchieu J, Sussman M R, et al. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice[J]. Plant Physiology, 2003, 132(2):618-628.[10] Ueno D, Koyama E, Yamaji N, et al. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan[J]. Journal of Experimental Botany, 2011, 62(7):2 265-2 272.[11] Miyadate H, Adachi S, Hiraizumi A, et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011,189(1):190-199.[12] Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38):16 500-16 505.[13] Shimo H, Ishimaru Y, An G, et al. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15):5 727-5 734.[14] Conner A J, Glare T R, Nap J P. The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment[J]. The Plant Journal, 2003, 33(1):19-46.[15] Karfowski W M, Hirsch A M. The overexpression of an alfalfa RING-H2 gene induces pleiotropic effects on plant growth and development[J]. Plant Molecular Biology, 2003, 52(1):121-133.[16] Kuiper H A, Kleter G A, Noteborn H P, et al. Assessment of the food safety issues related to genetically modified foods[J]. The Plant Journal, 2001, 27(6):503-528.[17] Ye X, Al-Babili S, Klöti A, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science, 2000, 287(5 451):303-305.[18] Christou P, Swain W F. Cotransformation frequencies of foreign genes in soybean cell cultures[J]. Theoretical and Applied Genetics, 1990, 79:337-341.[19] Delhaize E, Gruber B D, Pittman J K, et al. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance[J]. The Plant Journal, 2007, 51:198-210.[20] 中国科学院华南植物园. 一种水稻重金属诱导型组织特异性启子MTP11P 及其应用:中国, 201110249214.9 . 2012-12-26.[21] Hartley J L, Temple G F, Brasch M A, et al. DNA cloning using in vitro site-specific recombination[J]. Genome Research, 2000, 10(11):1 788-1 795.[22] Bushman W, Thompson J, Vargas L, et al. Control of directionality in Lambda site specific recombination[J]. Science, 1985, 230(4 782):906-911.[23] Landy A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination[J]. Annual Review of Biochemistry, 1989, 58:913-949.[24] 陶刚, 刘作易, 朱英, 等. 水稻玉米基因组DNA 提取方法的改进[J]. 贵州农业科学,2004,32(6):21-22.[25] Chen S B, Songkumarn P, Liu J L, et al. A versatile zero background T-vector system for gene cloning and functional genomics[J]. Plant Physiology, 2009, 150(3):1 111-1 121.[26] Chen Q J, Zhou H M, Chen J, et al. Using a modified TA cloning method to creat entry clones[J]. Analytical Biochemistry, 2006, 358(1):120-125.[27] Tian H, Baxter I R, Lahner B, et al. Arabidopsis NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance[J]. The Plant Cell, 2010, 22:3 963-3 979. |