[1] Luo M F, Hou Z Y, Yuan X X, et al. Characterization study of CeO2supported pd catalyst for low-temperature carbon monoxide oxidation[J]. Catal Lett, 1998, 50(3/4):205-209.[2] Zhu H Q, Qin Z F, Shan W J, et al. Low-temperature oxidation of co over Pd/CeO2-TiO2 catalysts with different pretreatments[J]. J Catal, 2005, 233(1):41-50.[3] Glaspell G, Hassan H M A, Elzatahry A, et al. Nanocatalysis on supported oxides for co oxidation[J]. Top Catal, 2008, 47(1/2):22-31.[4] Hegde M S, Madras G, Patil K C. Noble metal ionic catalysts[J]. Accounts Chem Res, 2009, 42(6):704-712.[5] Wang B, Weng D A, Wu X D, et al. Modification of Pd-CeO2 catalyst by different treatments:effect on the structure and co oxidation activity[J]. Appl Surf Sci, 2011, 257(9):3878-3883.[6] Idriss H, Diagne C, Hindermann J P, et al. Reactions of acetaldehyde on ceria and ceria-supported catalysts[J]. J Catal, 1995, 155(2):219-237.[7] Bunluesin T, Gorte R J,Graham G W. Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh:implications for oxygen-storage properties[J]. Appl Catal B-Environ, 1998, 15(1/2):107-114.[8] Craciun R, Daniell W,Knozinger H. The effect of CeO2 structure on the activity of supported pd catalysts used for methane steam reforming[J]. Appl Catal A-Gen, 2002, 230(1/2):153-168.[9] Boronin A I, Slavinskaya E M, Danilova I G, et al. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature co oxidation[J]. Catal Today, 2009, 144(3/4):201-211.[10] Meng L, Jia A-P, Lu J Q, et al. Synergetic effects of pdo species on co oxidation over PdO-CeO2 catalysts[J]. J Phys Chem C, 2011, 115(40):19789-19796.[11] Hadi A,Yaacob, II. Synthesis of pdo/ceo2 mixed oxides catalyst for automotive exhaust emissions control[J]. Catal Today, 2004, 96(3):165-170.[12] Zhu H Q, Qin Z F, Shan W J, et al. Pd/CeO2-TiO2 catalyst for co oxidation at low temperature:A tpr study with H2 and co as reducing agents[J]. J Catal, 2004, 225(2):267-277.[13] Luo M F, Pu Z Y, He M, et al. Characterization of PdO/Ce0.8Y0.2O1.9 catalysts for carbon monoxide and methane oxidation[J]. J Mol Catal A-Chem, 2006, 260(1/2):152-156.[14] Oh S H, Hoflund G B. Chemical state study of palladium powder and ceria-supported palladium during low-temperature co oxidation[J]. J Phys Chem A, 2006, 110(24):7609-7613.[15] Chiesa M, Giamello E, Di Valentin C, et al. Nature of the chemical bond between metal atoms and oxide surfaces:new evidences from spin density studies of k atoms on alkaline earth oxides[J]. J Am Chem Soc, 2005, 127(48):16935-16944.[16] Lu J, Serna P, Aydin C, et al. Supported molecular iridium catalysts:resolving effects of metal nuclearity and supports as ligands[J]. J Am Chem Soc, 2011, 133(40):16186-16195.[17] Si R, Flytzani-Stephanopoulos M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Edit, 2008, 47(15):2884-2887.[18] Boucher M B, Goergen S, Yi N, et al. 'Shape effects' in metal oxide supported nanoscale gold catalysts[J]. Phys Chem Chem Phys, 2011, 13(7):2517-2527.[19] Yi N, Si R, Saltsburg H, et al. Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions[J]. Energy Environ Sci, 2010, 3(6):831-837.[20] Zhou K B, Li Y D. Catalysis based on nanocrystals with well-defined facets[J]. Angew Chem Int Edit 2012, 51(3):602-613.[21] Nolan M, Parker S C, Watson G W. Reduction of NO2 on ceria surfaces[J]. J Phys Chem B, 2006, 110(5):2256-2262.[22] Shapovalov V, Metiu H. Catalysis by doped oxides:Co oxidation by AuxCe1-xO2[J]. J Catal, 2007, 245(1):205-214.[23] Yang Z, Zhansheng L A, Luo G, et al. Oxygen vacancy formation energy at the Pd/CeO2(111) interface[J]. Phys Lett A, 2007, 369(1/2):132-139.[24] Herman G S. Characterization of surface defects on epitaxial CeO2(001) films[J]. Surf Sci, 1999, 437(1/2):207-214.[25] Skorodumova N V, Baudin M, Hermansson K. Surface properties of CeO2 from first principles[J]. Phys Rev B, 2004, 69(7):075401.[26] Yao H C,Yao Y F Y Ceria n automotive exhaust catalysts. 1. Oxygen storage[J]. J Catal, 1984, 86(2):254-265.[27] Sayle D C, Maicaneanu S A, Watson G W. Atomistic models for CeO2(111), (110), and (100) nanoparticles, supported on yttrium-stabilized zirconia[J]. J Am Chem Soc, 2002, 124(38):11429-11439.[28] Nolan M, Parker S C,Watson G W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria[J]. Surf Sci, 2005, 595(1-3):223-232.[29] Baudin M, Wojcik M, Hermansson K. Dynamics, structure and energetics of the (111), (011) and (001) surfaces of ceria[J]. Surf Sci, 2000, 468(1-3):51-61.[30] Herman G S. Surface structure determination of CeO2(001) by angle-resolved mass spectroscopy of recoiled ions[J]. Phys Rev B, 1999, 59(23):14899-14902.[31] Norenberg H, Harding J H. The surface structure of CeO2(001) single crystals studied by elevated temperature stm[J]. Surf Sci, 2001, 477(1):17-24.[32] Putta C B, Ghosh S. Palladium nanoparticles on amphiphilic carbon spheres:a green catalyst for suzuki-miyaura reaction[J]. Adv Synth Catal, 2011, 353(11/12):1889-1896.[33] Priolkar K R, Bera P, Sarode P R, et al. Formation of Ce1-xPdxO2-delta solid solution in combustion-synthesized Pd/CeO2 catalyst:xrd, xps, and exafs investigation[J]. Chem Mat, 2002, 14(5):2120-2128.[34] Meng L, Jia A P, Lu J Q, et al. Synergetic effects of PdO species on co oxidation over PdO-CeO2 catalysts[J]. J Phys Chem C, 2011, 115(40):19789-19796.[35] Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, et al. Influence of ceria on pd activity for the CO+O2 reaction[J]. J Catal, 1999, 187(2):474-485.[36] Hinokuma S, Fujii H, Okamoto M, et al. Metallic pd nanoparticles formed by Pd-O-Ce interaction:a reason for sintering-induced activation for co oxidation[J]. Chem Mat, 2010, 22(22):6183-6190.[37] Hirvi J T, Kinnunen T J J, Suvanto M, et al. CO oxidation on PdO surfaces[J]. J Chem Phys, 2010, 133(8):084706.[38] Chen Y, Hu P, Lee M H, et al. Au on (111) and (110) surfaces of CeO2:a density-functional theory study[J]. Surf Sci, 2008, 602(10):1736-1741.[39] Zhang C J, Michaelides A, King D A, et al. Anchoring sites for initial au nucleation on CeO2{111}:O vacancy versus Ce vacancy[J]. J Phys Chem C, 2009, 113(16):6411-6417. |