[1] Aidun C K, Clausen J R. Lattice-boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42: 439-472.
[2] Avci B, Wriggers P A. DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows[J]. Journal of Applied Mechanics, 2012, 79(1): 10 901-10 907.
[3] Feng Z G, Michaelides E E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J]. Journal of Computational Physics, 2004, 195(2): 602-628.
[4] Fortes A F, Joseph D D, Lundgren T S. Nonlinear mechanics of fluidization of beds of spherical particles[J]. Journal of Fluid Mechanics, 1987, 177: 467-483.
[5] Lomholt S, Stenum B, Maxey M R. Experimental verification of the force coupling method for particulate flows[J]. International Journal of Multiphase Flow, 2002, 28(2): 225-246.
[6] Feng J, Hu H H, Joseph D D. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation[J]. Journal of Fluid Mechanics, 1994, 261: 95-134.
[7] Glowinski R, Pan T W, Hesla T I, et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow[J]. Journal of Computational Physics, 2001, 169(2): 363-426.
[8] Gao H, Li H, Wang L. Lattice Boltzmann simulation of turbulent flow laden with finite-size particles[J]. Computers & Mathematics with Applications, 2013,65(2): 194-210.
[9] Johnson A A, Tezduyar T E. 3D simulation of fluid-particle interactions with the number of particles reaching 100[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 145(3): 301-321.
[10] Pan T W, Joseph D D, Bai R, et al. Fluidization of 1 204 spheres: simulation and experiment[J]. Journal of Fluid Mechanics, 2002, 451: 169-192.
[11] Kajishima T. Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 721-728.
[12] Yin X L, Koch D L. Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds numbers[J]. Physics of Fluids,2007,19:093302.
[13] Cao C S, Chen S, Li J, et al. Simulating the interactions of two freely settling spherical particles in Newtonian fluid using lattice-Boltzmann method[J]. Applied Mathematics and Computation, 2015, 250:533-551.
[14] 郭照立,郑楚光,李青,等.流体动力学的格子Boltzmann方法[M].武汉:湖北科学技术出版社,2002:1-6.
[15] Kandhai D, Koponen A, Hoekstra A, et al. Implementation aspects of 3D lattice-BGK: boundaries, accuracy, and a new fast relaxation method[J]. Journal of Computational Physics, 1999, 150(2): 482-501.
[16] Wu J, Aidun C K. Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force[J]. International Journal for Numerical Methods in Fluids, 2010, 62(7): 765-783.
[17] Lucci F, Ferrante A, Elghobashi S. Modulation of isotropic turbulence by particles of Taylor length-scale size[J]. Journal of Fluid Mechanics, 2010, 650: 5-55.
[18] Mordant N, Pinton J F. Velocity measurement of a settling sphere[J]. European Physical Journal B, 2000, 18(2): 343-352.
[19] Apte Sourabh V, Martin M, Patankar N A. A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows[J]. Journal of Computational Physics, 2009, 228(8): 2 712-2 738. |