[1] Hambidge K M, Krebs N F, Jacobs M A, et al. Zinc nutritional status during pregnancy:a longitudinal study[J]. American Journal of Clinical Nutrition, 1983, 37(3):429-442.
[2] Cakmak I.Enrichment of cereal grains with zinc:agronomic or genetic biofortification?[J].Plant Soil, 2008, 302(1):1-17.
[3] Clemens S, Palmgren M G, Kramer U. A long way ahead:understanding and engineering plant metal accumulation[J].Trends in Plant Science, 2002, 7(7):309-315.
[4] Chong K, Edwin W, Christopher S C. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana[J]. New Phytologist, 2009, 181(1):71-78.
[5] Williams L E, Mills R F. P1B-ATPases:an ancient family of transition metal pumps with diverse functions in plants[J]. Trends in Plant Science, 2005, 10(10):491-502.
[6] 张玉秀,张媛雅,孙涛,等.植物重金属转运蛋白P1B-ATPase结构和功能研究进[J]. 生物工程学报,2010,26(6):715-725.
[7] Grønberg C, Sitsel O, Lindahl E, et al. Membrane anchoring and Ion-entry dynamics in P-type ATPase copper transport[J]. Biophysical Journal, 2016, 111(11):2417-2429.
[8] Raimunda D, Subramanian P, Stemmler T, et al. A tetrahedral coordination of Zinc during transmembrane transport by P-type Zn2+-ATPases[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2016, 1818(5):1374-1377.
[9] 汪宏,金继运.植物对Zn吸收运输及积累的生理与分子机制[J].植物营养与肥料学报, 2009, 15(1):225-235.
[10] Hassinen V H, Tuomainen M, Peraniemi S, et al. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens[J]. Journal of Experimental Botany, 2009, 60(1):187-196.
[11] Joshi R, Pareek A, Singla-Pareek S L, et al. Plant Metal Interaction[M]. Elsevier, 2016:239-261.
[12] Liu G Y, Zhang Y X, Chai T Y. Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco[J]. Plant Cell Reports, 2011, 30(3):1-10.
[13] Zhang F Q, Wang Y S, Lou Z P, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza)[J]. Chemosphere, 2007, 67(1):44-50.
[14] Lee S, Kim Y Y, Lee Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein[J]. Journal of Plant Physiology, 2007, 145(3):831-842.
[15] Verret F, Gravot A, Auroy P, et al. Over expression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance[J]. FEBS Letters, 2004, 576(3):306-312.
[16] Tan J J, Wang J W, Chai T Y, et al. Functional analyses of TaHMA2, a P1B-type ATPase in wheat[J]. Plant Biotechnology Journal, 2013, 11(4):420-431.
[17] 徐玉凤,周功克,李一勤,等. 锌对水稻金属硫蛋白基因家族的表达以及重组酵母细胞耐受性的影响[J]. 自然科学进展, 2007,17(7):899-904.
[18] Liu P, Goh C J, Loh C S, et al. Differential expression and characterization of three metallothionein-like genes in Cavendish banana (Musa acuminata)[J]. Physiologia Plantarum, 2002, 114(2):241-250.
[19] Chang T, Liu X, Xu H, et al. A metallothionein-like gene htMT2 strongly expressed in int-ernodes and nodes of Helianthus tuberosus and effects of metal ion treatment on its expression[J]. Planta, 2004, 218(3):449-455.
[20] Castiglione S, Franchin C, Fossati T, et al. High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar[J]. Chemosphere, 2007, 67(6):1117-1126.
[21] Hirata K, Tsujimoto Y, Namba T, et al. Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta[J]. Journal of Bioscience and Bioengineering, 2001, 92(1):24-29. |