[1] Schneising O, Heymann J, Buchwitz M, et al. Anthropogenic carbon dioxide source areas observed from space:assessment of regional enhancements and trends[J]. Atmospheric Chemistry & Physics, 2013, 13(5):2445-2454.
[2] 刘毅, 杨东旭, 蔡兆男. 中国碳卫星大气CO2反演方法:GOSAT数据初步应用[J]. 科学通报, 2013, 58(11):996-999.
[3] Hakkarainen J, Ialongo I, Tamminen J. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2[J]. Geophysical Research Letters, 2016, 43(21):400-406.
[4] Janardanan R, Maksyutov S, Oda T, et al. Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates[J]. Geophysical Research Letters, 2016, 43(7):3486-3493.
[5] 布然, 雷莉萍, 郭丽洁,等. 大气CO2浓度时空变化卫星遥感监测的应用潜力分析[J]. 遥感学报, 2015, 19(1):34-45.
[6] He Z, Zeng Z C, Lei L, et al. A data-driven assessment of biosphere-atmosphere interaction impact on seasonal cycle patterns of XCO2 using GOSAT and MODIS observations[J]. Remote Sensing, 2017, 9(3):251-272.
[7] Wunch D, Wennberg P O, Osterman G, et al. Comparisons of the orbiting carbon observatory-2(OCO-2) XCO2 measurements with TCCON[J]. Atmospheric Measurement Techniques, 2017, 10(6):2209-2238.
[8] Kulawik S, Wunch D, O'Dell C, et al. Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON[J]. Atmospheric Measurement Techniques, 2015, 8(6):6217-6277.
[9] Connor B J, Rodgers C D. Intercomparison of remote sounding instruments[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D3):2152-2206.
[10] Jing Y, Shi J, Wang T, et al. Mapping global atmospheric CO2 concentration at high spatiotemporal resolution[J]. Atmosphere, 2014, 5(4):870-888.
[11] Butz A, Deutscher N M. The greenhouse gas climate change initiative (GHG-CCI):comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4[J]. Atmospheric MeasurementTechniques Discussions, 2014, 6(5):8679-8741.
[12] O'Dell C W, Connor B, Bosch H, et al. The ACOS CO2 retrieval algorithm-Part 1:Description and validation against synthetic observations[J]. Atmospheric Measurement Techniques, 2012, 4(1):99-121.
[13] Worden J R, Doran G, Kulawik S, et al. Evaluation and attribution of OCO-2 XCO2 uncertainties[J]. Atmospheric Measurement Techniques, 2017, 10(7):1-28.
[14] Reuter M, Bovensmann H, Buchwitz M, et al. Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY:validation with FTS measurements and comparison with model results[J]. Journal of Geophysical Research Atmospheres, 2011, 116(D4):220-237.
[15] Peters W, Jacobson A R, Sweeney C, et al. An atmospheric perspective on North American carbon dioxide exchange:CarbonTracker[J]. Proc Natl Acad Sci USA, 2007, 104(48):18925-18930.
[16] Rodgers C D. Inverse methods for atmospheric sounding[M]. London:World Scientific, 2000:187-196.
[17] Gurney K R, Law R M, Denning A S, et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models[J]. Nature, 2002, 415(6872):626-630.
[18] Law R M, Rayner P J, Steele L P, et al. Using high temporal frequency data for CO2 inversions[J]. Global Biogeochemical Cycles, 2002, 16(4):1053-1070.
[19] Chevallier F, Broquet G, Pierangelo C, et al. Probabilistic global maps of the CO2 column at daily and monthly scales from sparse satellite measurements[J]. Journal of Geophysical Research Atmospheres, 2017, 122(14):7614-7629.
[20] Han G, Ma X, Liang A, et al. Performance evaluation for China's planned CO2-IPDA[J]. Remote Sensing, 2017, 9(8):768-789. |