[1] 高卫东, 魏文寿, 张丽旭. 近30 a来天山西部积雪与气候变化:以天山积雪雪崩研究站为例[J]. 冰川冻土, 2005, 27(1):68-73. [2] 秦艳, 丁建丽, 赵求东, 等. 2001-2015年天山山区积雪时空变化及其与温度和降水的关系[J]. 冰川冻土, 2018, 40(2):249-260. [3] 邱玉宝, 张欢, 除多, 等. 基于MODIS的青藏高原逐日无云积雪产品算法[J]. 冰川冻土, 2017, 39(3):515-526. [4] 于灵雪, 张树文, 贯丛, 等. 黑龙江流域积雪覆盖时空变化遥感监测[J]. 应用生态学报, 2014, 25(9):2521-2528. [5] 唐志光, 王建, 王欣, 等. 基于MODIS数据的青藏高原积雪日数提取与时空变化分析[J].山地学报, 2017, 35(3):412-419. [6] Wang X W, Zhu Y, Chen Y N, et al. Influences of forest on MODIS snow cover mapping and snow variations in the Amur River basin in Northeast Asia during 2000-2014[J]. Hydrological Processes, 2017, 31(8):3225-3241. [7] 肖迪芳, 张雪峰. 黑龙江流域水文水资源特性初析[J]. 水文, 1992(1):51-53. [8] 王建, 车涛, 李震, 等. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1):12-26. [9] 王嫣娇, 左合君, 刘宝河. 中国积雪时空分布研究进展[J]. 内蒙古林业科技, 2017, 43(3):47-51. [10] Foster J, Hall D, Eylander J, et al. Blended visible, passive microwave and scatterometer global snow products[C]//64th Eastern Snow Conference Newfoundland, Canada, 2007:27-36. [11] Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote Sensing of Environment, 2002, 83(1/2):181-194. [12] 雷小春, 宋开山, 王宗明, 等. 黑龙江流域MODIS和AMSR-E雪盖产品精度分析[J]. 中国科学院研究生院学报, 2011, 28(1):43-50. [13] Paudel K P, Andersen P. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology[J]. Remote Sensing of Environment, 2011, 115(5):1234-1246. [14] Liu J P, Zhang W C, Liu T. Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products[J]. Journal of Arid Land, 2017, 9(5):763-777. [15] Xie H J, Wang X W, Liang T G. Development and assessment of combined Terra and Aqua snow cover products in Colorado Plateau, USA and northern Xinjiang, China[J]. Journal of Applied Remote Sensing, 2009, 3(1):033559. [16] Parajka J, Blöschl G. Spatio-temporal combination of MODIS images:potential for snow cover mapping[J]. Water Resources Research, 2008, 44(3):72-84. [17] 黄晓东, 郝晓华, 王玮, 等. MODIS逐日积雪产品去云算法研究[J]. 冰川冻土, 2012, 34(5):1118-1126. [18] Wang X W, Xie H J. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua[J]. Journal of Hydrology, 2009, 371(1-4):192-200. [19] Gafurov A, Bárdossy A. Cloud removal methodology from MODIS snow cover product[J]. Hydrology and Earth System Sciences, 2009, 13(7):1361-1373. [20] Gao Y, Xie H J, Lu N, et al. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements[J]. Journal of Hydrology, 2010, 385(1-4):23-35. [21] Dietz A J, Kuenzer C, Conrad C. Snow cover variability in Central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products[J]. International Journal of Remote Sensing, 2013, 34(11):3879-3902. [22] Parajka J, Pepe M, Rampini A, et al. A regional snow-line method for estimating snow cover from MODIS during cloud cover[J]. Journal of Hydrology, 2010, 381(3/4):203-212. [23] Dahmer T D. Amur-Heilong River Basin reader[M]. Hong Kong:Ecosystems Ltd, 2008. [24] Egidarev E, Simonov E, Darman Y. Amur-Heilong River Basin:overview of wetland resources[M]. The Wetland Book. Dordrecht:Springer Netherlands, 2016:1-15. [25] Riggs G A, Hall D K, Salomonson V V. MODIS snow products user guide to collection 5[EB/OL]. (2006-09-01)[2019-11-13]. http://modis-snow-ice.gsfc.nasa.gov/uploads/sug_c5.pdf. [26] 张欢, 邱玉宝, 郑照军, 等. 基于MODIS的青藏高原季节性积雪去云方法可行性比较研究[J]. 冰川冻土, 2016, 38(3):714-724. [27] 刘金平, 张万昌, 邓财, 等. 2000-2014年西藏雅鲁藏布江流域积雪时空变化分析及对气候的响应研究[J]. 冰川冻土, 2018, 40(4):643-654. [28] 除多. 2000-2014年西藏高原积雪覆盖时空变化[J]. 高原山地气象研究, 2016, 36(1):27-37. [29] 沈鎏澄, 吴涛,游庆龙, 等. 青藏高原中东部积雪深度时空变化特征及其成因分析[J]. 冰川冻土, 2019, 41(5):1150-1161. [30] 张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9):958-968. |