[1] Say S M, Keskin M, Sehri M, et al. Adoption of precision agriculture technologies in developed and developing countries[C]//International Science and Technology Conferecce. Berlin, 2017:41-49.
[2] 方向明, 李姣媛. 精准农业:发展效益、国际经验与中国实践[J]. 农业经济问题, 2018(11):28-37.
[3] Bargiel D. A new method for crop classification combining time series of radar images and crop phenology information[J]. Remote Sensing of Environment, 2017, 198:369-383.
[4] 张佳华, 胡小夏, 刘学锋, 等. 基于MODIS数据提取华北典型区冬小麦种植面积[J]. 中国科学院研究生院学报, 2013, 30(5):637-643.
[5] 史舟, 梁宗正, 杨媛媛, 等. 农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2):247-260.
[6] 史飞飞, 高小红, 杨灵玉, 等. 基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究[J]. 遥感技术与应用, 2017, 32(2):206-217.
[7] 王文静, 张霞, 赵银娣, 等. 综合多特征的Landsat8时序遥感图像棉花分类方法[J]. 遥感学报, 2017, 21(1):115-124.
[8] 史飞飞, 雷春苗, 肖建设, 等. 基于多源遥感数据的复杂地形区农作物分类[J]. 地理与地理信息科学, 2018, 34(5):49-55,2.
[9] Cai Y, Guan K, Peng J, et al. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach[J]. Remote Sensing of Environment, 2018, 210:35-47.
[10] 刘佳, 王利民, 滕飞, 等. RapidEye卫星红边波段对农作物面积提取精度的影响[J]. 农业工程学报, 2016, 32(13):140-148.
[11] Chauhan H J, Mohan B K. Measures to improve crop classification using remotely sensed hyperion hyperspectral imagery[C]//2012 International Conference on Communications, Devices and Intelligent Systems (CODIS). IEEE, 2012:596-599.
[12] Senf C, Leitão P J, Pflugmacher D, et al. Mapping land cover in complex Mediterranean landscapes using Landsat:improved classification accuracies from integrating multi-seasonal and synthetic imagery[J]. Remote Sensing of Environment, 2015, 156:527-536.
[13] 翟涌光, 屈忠义. 基于非线性降维时序遥感影像的作物分类[J]. 农业工程学报, 2018, 34(19):177-183.
[14] Löw F, Michel U, Dech S, et al. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2013, 85(6):102-119.
[15] Tewkesbury A P, Comber A J, Tate N J, et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.
[16] Ji S, Zhang C, Xu A, et al. 3D convolutional neural networks for crop classification with multi-temporal remote sensing images[J]. Remote Sensing, 2018, 10(2):75.
[17] 张健康, 程彦培, 张发旺, 等. 基于多时相遥感影像的作物种植信息提取[J]. 农业工程学报, 2012, 28(2):134-141.
[18] 郭昱杉, 刘庆生, 刘高焕, 等. 基于MODIS时序NDVI主要农作物种植信息提取研究[J]. 自然资源学报, 2017, 32(10):1808-1818.
[19] Belgiu M, Csillik O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis[J]. Remote Sensing of Environment, 2018, 204:509-523.
[20] Ma X, Fu A, Wang J, et al. Hyperspectral image classification based on deep deconvolution network with skip architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4781-4791.
[21] 闫苗, 赵红东, 李宇海, 等. 基于卷积神经网络的高光谱遥感地物多分类识别[J]. 激光与光电子学进展, 2019, 56(2):191-198.
[22] 江璐, 赵彤, 吴敏. 基于深度卷积神经网络的指纹纹型分类算法[J]. 中国科学院大学学报, 2016, 33(6):808-814.
[23] 吕俊奇, 邱卫根, 张立臣, 等. 多层卷积特征融合的行人检测[J]. 计算机工程与设计, 2018, 39(11):3481-3485.
[24] 欧攀, 张正, 路奎, 等. 基于卷积神经网络的遥感图像目标检测[J]. 激光与光电子学进展, 2019, 56(5):1-12.
[25] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. Lake Tahoe, 2012:1097-1105.
[26] 陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学, 2019(3):63-73.
[27] Xu X, Li W, Ran Q, et al. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):937-949.
[28] Adelabu S, Mutanga O, Adam E. Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 95:34-41.
[29] 郑阳, 吴炳方, 张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价[J]. 遥感学报, 2017, 21(2):318-328.
[30] Rapinel S, Mony C, Lecoq L, et al. Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities[J]. Remote Sensing of Environment, 2019, 223:115-129.
[31] Truong T D, Nguyen V T, Tran M T. Lightweight deep convolutional network for tiny object recognition[C]//International Conference on Pattern Recognition Applications and Methods. Funchal, 2018:675-682.
[32] Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J], Comput Science, 2012, 3(4):212-223.
[33] Srivastava N, Hinton G E, Krizhevsky A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
[34] Zhong L, Hu L, Zhou H. Deep learning based multi-temporal crop classifcation[J]. Remote Sensing of Environment, 2019, 221:430-443.
[35] Kussul N, Lavreniuk M, Skakun S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):778-782.
[36] 张兵. 遥感大数据时代与智能信息提取[J]. 武汉大学学报(信息科学版), 2018, 43(12):1861-1871.
[37] Tuia D, Marcos D, Camps-Valls G. Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 120:1-12. |