[1] Zhang X P, Xiong H K, Zhou W G, et al. Picking deep filter responses for fine-grained image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2016:1134-1142. [2] Reed S, Akata Z, Lee H, et al. Learning deep representations of fine-grained visual descriptions[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2016:49-58. [3] Fu J L, Zheng H L, Mei T. Look closer to see better:recurrent attention convolutional neural network for fine-grained image recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2017:4476-4484. [4] Yu Y, Jin Q, Chen C W. FF-cmnet:a cnn-based model for fine-grained classification of car models based on feature fusion[C]//2018 IEEE International Conference on Multimedia and Expo. IEEE Computer Society, 2018:1-6. [5] Khosla A, Jayadevaprakash N, Yao B P, et al. Novel dataset for fine-grained image categorization:stanford dogs[C/OL]. (2011-06-20)[2019-05-17]. http://people.csail.mit.edu/khosla/papers/fgvc2011.pdf. [6] Yang L J, Luo P, Loy C C, et al. A large-scale car dataset for fine-grained categorization and verification[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2015:3973-3981. [7] Liu X, Xia T, Wang J, et al. Fully convolutional attention networks for fine-grained recognition[C/OL]. arXiv:1603.06765v4, 2017.[2019-04-27]. http://arxiv.org/abs/1603.06765. [8] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2016:770-778. [9] He X T, Peng Y X. Fine-grained image classification via combining vision and language[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2017:7332-7340. [10] Redmon J, Farhadi A. Yolo9000:better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2017:6517-6525. [11] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C/OL]. arXiv:1409.1556, 2015.[2019-04-20]. https://arxiv.org/abs/1409.1556. [12] Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [13] Redmon J, Farhadi A. Yolov3:an incremental improvement[C/OL]. arXiv:1804.02767, 2018.[2019-04-20]. http://arxiv.org/abs/1804.02767. [14] Krause J, Stark M, Deng J, et al. 3d object representations for fine-grained categorization[C]//2013 IEEE International Conference on Computer Vision Workshops. IEEE Computer Society, 2013:554-561. [15] Sermanet P, Frome A, Real E. Attention for fine-grained categorization[C/OL]. arXiv:1412.7054, 2015.[2019-04-20]. https://arxiv.org/abs/1412.7054. [16] Krause J, Jin H L, Yang J C, et al. Fine-grained recognition without part annotations[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2015:5546-5555. [17] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2014:580-587. [18] Zhao B, Wu X, Feng J S, et al. Diversified visual attention networks for fine-grained object classification[J]. IEEE Trans Multimedia, 2017, 19(6):1245-1256. [19] Lin T Y, Roychowdhury A, Maji S. Bilinear convolutional neural networks for fine-grained visual recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 40(6):1309-1322. [20] Hu Q C, Wang H B, Li T, et al. Deep CNNs with spatially weighted pooling for fine-grained car recognition[J]. IEEE Trans Intelligent Transportation Systems, 2017, 18(11):3147-3156. |