[1] Vicente E J, Dean D R. Keeping the nitrogen-fixation dream alive[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12):3009-3011. [2] 何道文, 孙辉, 黄雪菊. 利用N-15自然丰度法研究固氮植物生物固氮量[J]. 干旱地区农业研究, 2004, 22(1):132-137. [3] 陈朝勋, 席琳乔, 姚拓, 等. 生物固氮测定方法研究进展[J]. 草原与草坪, 2005, 25(2):24-26. [4] Hong J T, Ma X X, Zhang X K, et al. Nitrogen uptake pattern of herbaceous plants:coping strategies in altered neighbor species[J]. Biology and Fertility of Soils, 2017, 53(7):729-735. [5] Xu X L, Ouyang H, Cao G M, et al. Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment caused by a fungal fairy in an alpine meadow[J]. Plant and Soil, 2011, 341(1/2):495-504. [6] Schleuss P M, Heitkamp F, Sun Y, et al. Nitrogen uptake in an alpine Kobresia pasture on the Tibetan Plateau:localization by 15N labeling and implications for a vulnerable ecosystem[J]. Ecosystems, 2015, 18(6):946-957. [7] Carranca C, de Varennes A, Rolston D E. Biological nitrogen fixation estimated by 15N dilution, natural 15N abundance, and N difference techniques in a subterranean clover-grass sward under Mediterranean conditions[J]. European Journal of Agronomy, 1999, 10(2):81-89. [8] Lonati M, Probo M, Gorlier A, et al. Nitrogen fixation assessment in a legume-dominant alpine community:comparison of different reference species using the 15N isotope dilution technique[J]. Alpine Botany, 2015, 125(1):51-58. [9] Yang B J, Qiao N, Xu X L, et al. Symbiotic nitrogen fixation by legumes in two Chinese grasslands estimated with the 15N dilution technique[J]. Nutrient Cycling in Agroecosystems, 2011, 91(1):91-98. [10] McAuliffe C, Chamblee D S, Uribe-Arango H, et al. Influence of inorganic nitrogen on nitrogen fixation by legumes as revealed by N15[J]. Agronomy Journal, 1958, 50(6):334-337. [11] Arnone Ⅲ J A. Symbiotic N2 fixation in a high Alpine grassland:effects of four growing seasons of elevated CO2[J]. Functional Ecology, 1999, 13(3):383-387. [12] Che R X, Deng Y C, Wang F, et al. Autotrophic and symbiotic diazotrophs dominate nitrogen-fixing communities in Tibetan grassland soils[J]. Science of the Total Environment, 2018, 639:997-1006. [13] Jacot K A, Lüscher A, Nösberger J, et al. The relative contribution of symbiotic N2 fixation and other nitrogen sources to grassland ecosystems along an altitudinal gradient in the Alps[J]. Plant and Soil, 2000, 225(1/2):201-211. [14] 代冬雪. 西藏高寒草原豆科与非豆科优势植物群落生物固氮功能比较研究[D]. 北京:中国科学院大学, 2015. [15] Yang K, He J, Tang W J, et al. On downward shortwave and longwave radiations over high altitude regions:observation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2010, 150(1):38-46. [16] Ledgard S F, Simpson J R, Freney J R, et al. Field evaluation of 15N techniques for estimating nitrogen fixation in legume-grass associations[J]. Australian Journal of Agricultural Research, 1985, 36(2):247. [17] Rennie R J, Dubetz S. Nitrogen-15-determined nitrogen fixation in field-grown chickpea, lentil, fababean, and field pea[J]. Agronomy Journal, 1986, 78(4):654-660. [18] Sun Y, Schleuss P M, Pausch J, et al. Nitrogen pools and cycles in Tibetan Kobresia pastures depending on grazing[J]. Biology and Fertility of Soils, 2018, 54(5):569-581. [19] Ti C P, Pan J J, Xia Y Q, et al. A nitrogen budget of mainland China with spatial and temporal variation[J]. Biogeochemistry, 2012, 108(1/2/3):381-394. [20] Bowman W D, Schardt J C, Schmidt S K. Symbiotic N2-fixation in alpine tundra:ecosystem input and variation in fixation rates among communities[J]. Oecologia, 1996, 108(2):345-350. [21] Jacot K A, Lüscher A, Nösberger J, et al. Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps[J]. Soil Biology and Biochemistry, 2000, 32(8/9):1043-1052. [22] Boddey R M, Urquiaga S, Neves M C P, et al. Quantification of the contribution of N2 fixation to field-grown grain legumes:a strategy for the practical application of the 15N isotope dilution technique[J]. Soil Biology and Biochemistry, 1990, 22(5):649-655. [23] 罗绪强, 张桂玲, 杨鸿雁, 等. 喀斯特山地不同退化植被下烟管荚蒾氮同位素组成的季节变化[J]. 科学技术与工程, 2020, 20(11):4243-4249. [24] 苏波, 韩兴国, 黄建辉. 15N自然丰度法在生态系统氮素循环研究中的应用[J]. 生态学报, 1999, 19(3):408-416. [25] Chalk P M, Ladha J K. Estimation of legume symbiotic dependence:an evaluation of techniques based on 15N dilution[J]. Soil Biology and Biochemistry, 1999, 31(14):1901-1917. [26] Yang L J, Zhang L L, Geisseler D, et al. Available C and N affect the utilization of glycine by soil microorganisms[J]. Geoderma, 2016, 283:32-38. [27] Hossain S A, Waring S A, Strong W M, et al. Estimates of nitrogen fixations by legumes in alternate cropping systems at Warra, Queensland, using enriched-15N dilution and natural 15N abundance techniques[J]. Australian Journal of Agricultural Research, 1995, 46(3):493-505. [28] Burchill W, James E K, Li D, et al. Comparisons of biological nitrogen fixation in association with white clover (Trifolium repens L.) under four fertiliser nitrogen inputs as measured using two 15N techniques[J]. Plant and Soil, 2014, 385(1/2):287-302. [29] Høgh-Jensen H, Schjoerring J K. Measurement of biological dinitrogen fixation in grassland:comparison of the enriched 15N dilution and the natural 15N abundance methods at different nitrogen application rates and defoliation frequencies[J]. Plant and Soil, 1994, 166(2):153-163. |