[1] Akopyan F, Sawada J, Cassidy A, et al. Truenorth:design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip[J]. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2015, 34(10):1537-1557. [2] Xu L, Yu R, Wang L, et al. Memway:in-memorywaylaying acceleration for practical rowhammer attacks against binaries[J]. Tsinghua Science and Technology, 2019, 24(5):535-545. [3] Kim Y, Daly R, Kim J, et al. Flipping bits in memory without accessing them:an experimental study of DRAM disturbance errors[J]. ACM SIGARCH Computer Architecture News, 2014, 42(3):361-372. [4] 王润泽,王颖,杨栋毅.大规模FFT并行计算中2维SRAM的设计[J].中国科学院研究生院学报, 2008, 25(1):123-128. [5] Zhu M, Song N, Pan X. Mitigation and experiment on neutron induced single-event upsets in SRAM-based FPGAs[J]. IEEE Transactions on Nuclear Science, 2013, 60(4):3063-3073. [6] Abraham J A, Siewiorek D P. An algorithm for the accurate reliability evaluation of triple modular redundancy networks[J]. IEEE Transactions on Computers, 1974, 100(7):682-692. [7] Gils V. A triple modular redundancy technique providing multiple-bit error protection without using extra redundancy[J]. IEEE Transactions on Computers, 1986, 100(7):623-631. [8] Katsarou K, Tsiatouhas Y. Soft error interception latch:double node charge sharing SEU tolerant design[J]. Electronics Letters, 2015, 51(4):330-332. [9] 桂江华,徐睿,卓琳.基于三模冗余架构的集成电路加固设计[J].中国电子科学研究院学报,2013,8(6):643-646. [10] Binder D, Smith E C, Holman A B. Satellite anomalies from galactic cosmic rays[J]. IEEE Transactions on Nuclear Science, 1975, 22(6):2675-2680. [11] 薛玉雄, 曹洲, 杨世宇, 等. IDT6116单粒子敏感性评估试验技术研究[J]. 原子能科学技术, 2008, 42(1):22-27. [12] Arechiga A P, Michaels A J. The effect of weight errors on neural networks[C]//2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2018:190-196. [13] Kwon S, Lee K, Kim Y, et al. Measuring error-tolerance in SRAM architecture on hardware accelerated neural network[C]//2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). IEEE, 2016:1-4. [14] Mukherjee S S, Emer J, Reinhardt S K. The soft error problem:an architectural perspective[C]//11th International Symposium on High-Performance Computer Architecture. IEEE, 2005:243-247. [15] Wirthlin M J, Keller A M, McCloskey C, et al. SEU mitigation and validation of the LEON3 soft processor using triple modular redundancy for space processing[C]//Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2016:205-214. [16] Saleh A M, Serrano J J, Patel J H. Reliability of scrubbing recovery-techniques for memory systems[J]. IEEE Transactions on Reliability, 1990, 39(1):114-122. [17] Agarwal A, Negahban S, Wainwright M J. A simple way to prevent neural networks from overfitting[J]. Ann Stat, 2012, 40(2):1171-1197. [18] Xiao T, Li H, Ouyang W, et al. Learning deep feature representations with domain guided dropout for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:1249-1258. [19] Wager S, Wang S, Liang P S. Dropout training as adaptive regularization[C]//Advances in Neural Information Processing Systems. 2013:351-359. [20] Pham V, Bluche T, Kermorvant C, et al. Dropout improves recurrent neural networks for handwriting recognition[C]//2014 14th International Conference on Frontiers in Handwriting Recognition. IEEE, 2014:285-290. [21] Yu N, Jiao P, Zheng Y. Handwritten digits recognition base on improved LeNet5[C]//The 27th Chinese Control and Decision Conference (2015 CCDC). IEEE, 2015:4871-4875. [22] Karlik B, Olgac A V. Performance analysis of various activation functions in generalized MLP architectures of neural networks[J]. International Journal of Artificial Intelligence and Expert Systems, 2011, 1(4):111-122. |