[1] 路晋生,张杰敏. 合成孔径雷达的发展历史及趋势[J]. 华北工学院测试技术学报,2000,14(2):80-86.DOI:10.3969/j.issn.1671-7449.2000.02.011. [2] 贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119-131. DOI:10.11999/JEIT180899. [3] Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. DOI:10.1016/j.patcog.2017.10.013. [4] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI:10.1145/3065386. [5] LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. DOI:10.1162/neco.1989.1.4.541. [6] 潘宗序, 安全智, 张冰尘. 基于深度学习的雷达图像目标识别研究进展[J]. 中国科学: 信息科学, 2019, 49(12): 1626-1639. [7] Ding J, Chen B, Liu H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364-368. DOI:10.1109/LGRS.2015.2513754. [8] Guo J Y, Lei B, Ding C B, et al. Synthetic aperture radar image synthesis by using generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1111-1115. DOI:10.1109/LGRS.2017.2699196. [9] 王泽隆,徐向辉,张雷. 基于仿真SAR图像深度迁移学习的自动目标识别[J]. 中国科学院大学学报, 2020, 37(4): 516-524. DOI:10.7523/j.issn.2095-6134.2020.04.011. [10] Huang Z L, Pan Z X, Lei B. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324-2336. DOI:10.1109/TGRS.2019.2947634. [11] 李松,魏中浩,张冰尘, 等. 深度卷积神经网络在迁移学习模式下的SAR目标识别[J]. 中国科学院大学学报, 2018, 35(1): 75-83. DOI:10.7523/j.issn.2095-6134.2018.01.010. [12] Pan Z X, Bao X J, Zhang Y T, et al. Siamese network based metric learning for SAR target classification[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. July 28-August 2, 2019, Yokohama, Japan. IEEE, 2019: 1342-1345. DOI:10.1109/IGARSS.2019.8898210. [13] Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training GANs[C]//NIPS’16: Proceedings of the 30th International Conference on Neural Information Processing Systems(NIPS 16). 2016: 2234-2242. [14] 邹浩,林赟,洪文. 基于多角度合成SAR图像的目标识别性能分析[J]. 中国科学院大学学报, 2019, 36(2): 226-234. DOI:10.7523/j.issn.2095-6134.2019.02.010. [15] Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. DOI:10.1109/TGRS.2016.2551720. [16] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS17). Long Beach, CA, USA. 3859-3869. [17] Paoletti M E, Haut J M, Fernandez-Beltran R, et al. Capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2145-2160. DOI:10.1109/TGRS.2018.2871782. [18] Guo Y J, Liao J J, Shen G Z. A deep learning model with capsules embedded for high-resolution image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 214-223. DOI:10.1109/JSTARS.2020.3032672. [19] 张盼盼, 罗海波, 鞠默然, 等. 一种改进的Capsule及其在SAR图像目标识别中的应用[J]. 红外与激光工程, 2020, 49(5): 203-210. DOI:10.3788/IRLA20201010. [20] 冯伟业,廖可非,欧阳缮,等. 基于胶囊神经网络的合成孔径雷达图像分类方法[J]. 科学技术与工程,2019,19(28): 203-207. [21] Xu K, Ba J L, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//International Conference on Machine Learning. PMLR, 2015: 2048-2057. [22] Jaderberg M, Simonyan K, Zisserman A, et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2. 2015: 2017-2025. [23] Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI:10.1109/TPAMI.2019.2913372. [24] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. DOI:10.1007/978-3-030-01234-2_1. [25] Ba J, Grosse R, Salakhutdinov R, et al. Learning wake-sleep recurrent attention models[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Vol 2. 2015: 2593-2601. [26] 李红艳, 李春庚, 安居白, 等. 注意力机制改进卷积神经网络的遥感图像目标检测[J]. 中国图象图形学报, 2019, 24(8): 1400-1408. [27] Wang D, Gao F, Dong J Y, et al. Change detection in synthetic aperture radar images based on convolutional block attention module[C]//2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). August 5-7, 2019, Shanghai, China. IEEE, 2019: 1-4. DOI:10.1109/Multi-Temp.2019.8866962. [28] 周龙, 王伟强, 吕科. FACR: 一种快速且准确的车辆识别器[J]. 中国科学院大学学报, 2021, 38(1): 130-136. DOI:10.7523/j.issn.2095-6134.2021.01.016. |