[1] 甄峰, 席广亮, 秦萧. 基于地理视角的智慧城市规划与建设的理论思考[J]. 地理科学进展, 2015, 34(4):402-409. DOI:10.11820/dlkxjz.2015.04.001. [2] 黄海涛, 柯长青. 高分辨率遥感影像中操场跑道的自动提取[J]. 遥感信息, 2009, 24(3):19-22, 29. DOI:10.3969/j.issn.1000-3177.2009.03.005. [3] 普恒. 高分遥感城市典型地物对象化识别方法研究[D]. 北京:北京建筑大学, 2019. [4] 范荣双, 陈洋, 徐启恒, 等. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报, 2019, 48(1):34-41. DOI:CNKI:SUN:CHXB.0.2019-01-006. [5] Wen Q, Jiang K Y, Wang W, et al. Automatic building extraction from google earth images under complex backgrounds based on deep instance segmentation network[J]. Sensors (Basel, Switzerland), 2019, 19(2):333. DOI:10.3390/s19020333. [6] Chen Y, Wei Y M, Wang Q J, et al. Mapping post-earthquake landslide susceptibility:a U-net like approach[J]. Remote Sensing, 2020, 12(17):2767. DOI:10.3390/rs12172767. [7] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2014, Columbus, OH, USA. IEEE, 2014:580-587. DOI:10.1109/CVPR.2014.81. [8] Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015:1440-1448. DOI:10.1109/ICCV.2015.169. [9] Ren S Q, He K M, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. DOI:10.1109/TPAMI.2016.2577031. [10] He K M, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017:2980-2988. DOI:10.1109/ICCV.2017.322. [11] Redmon J, Divvala S, Girshick R, et al. You only look once:unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:779-788. DOI:10.1109/CVPR.2016.91. [12] Redmon J, Farhadi A. YOLO9000:better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:6517-6525. DOI:10.1109/CVPR.2017.690. [13] Redmon J, Farhadi A. YOLOv3:an incremental improvement[EB/OL]. arXiv:1804.02767. (2018-04-08)[2021-12-15]. https://arxiv.org/abs/1804. 02767. [14] Alganci U, Soydas M, Sertel E. Comparative research on deep learning approaches for airplane detection from very high-resolution satellite images[J]. Remote Sensing, 2020, 12(3):458. DOI:10.3390/rs12030458. [15] 余东行, 张宁, 张保明, 等. 结合卷积神经网络与显著性特征的机场检测[J]. 测绘通报, 2019(7):44-49. DOI:10.13474/j.cnki.11-2246.2019.0216. [16] Ma H J, Liu Y L, Ren Y H, et al. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3[J]. Remote Sensing, 2019, 12(1):44. DOI:10.3390/rs12010044. [17] 陈连凯, 李邦昱, 齐亮. 融合图像显著性的YOLOv3船舶目标检测算法研究[J].软件导刊,2020,19(10):146-151. DOI:10.11907/rjdk.201157. [18] Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE,:2011-2023. DOI:10.1109/TPAMI.2019.2913372. [19] Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss:faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12993-13000. DOI:10.1609/aaai.v34i07.6999. [20] Hernández G A, König P. Do deep nets really need weight decay and dropout?[EB/OL]. arXiv:1802.07042. (2018-02-21)[2021-12-15]. https://arxiv.org/abs/1802.07042. [21] Ioffe S, Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL]. arXiv:1502.03167. (2021-03-29)[2021-12-15]. http://arxiv.org/abs/1502.03167v3. [22] Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:658-666. DOI:10.1109/CVPR.2019.00075. [23] 谢梦, 刘伟, 杨梦圆, 等. 深度卷积神经网络支持下的遥感影像飞机检测[J]. 测绘通报, 2019(6):19-23. DOI:10.13474/j.cnki.11-2246.2019.0177. [24] Zhang P, Su W H. Statistical inference on recall, precision and average precision under random selection[C]//20129th International Conference on Fuzzy Systems and Knowledge Discovery. May 29-31, 2012, Chongqing, China. IEEE, 2012:1348-1352. DOI:10.1109/FSKD.2012.6234049. [25] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:optimal speed and accuracy of object detection[EB/OL]. arXiv:2004.10934. (2020-04-23)[2021-12-15]. https://arxiv.org/abs/2004.10934. [26] Jocher G, Nishimura K, Mineeva T, et al. YOLOv5[EB/OL]. (2020-08-10)[2021-12-15]. https://github.com/ultralytics/yolov5. |