[1] Ventura G, Risegari L. Temperature scales and temperature fixed points [M]//The Art of Cryogenics: Low-Temperature Experimental Techniques. Elsevier, 2008. DOI: https://doi.org/10.1016/B978-008044479-6.50009-1. [2] Moldover M R, Tew W L, Yoon H W. Advances in thermometry [J]. Nature Physics, 2016, 12(1): 7-11.DOI: 10.1038/nphys3618. [3] Moldover M R, Gavioso R M, Mehl J B, et al. Acoustic gas thermometry [J]. Metrologia, 2014, 51(1): R1-R19.DOI: 10.1088/0026-1394/51/1/r1. [4] Gugan D, Michel G W. Dielectric constant gas thermometry from 4.2 to 27.1 K [J]. Metrologia, 1980, 16(4): 149-167.DOI: 10.1088/0026-1394/16/4/002. [5] Kirste A, Engert J. A SQUID-based primary noise thermometer for low-temperature metrology [J]. Philosophical Transactions.Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2064): 20150050. DOI:10.1098/rsta.2015.0050. [6] Peruzzi A, Bosma R, de Groot M J, et al. 4He interpolating constant-volume gas thermometry in the range 3.0 K to 24.556 1 K [J]. Metrologia, 2010, 47(3): 325-333.DOI: 10.1088/0026-1394/47/3/024. [7] Pitre L, Moldover M R, Tew W L. Acoustic thermometry: new results from 273 K to 77 K and progress towards 4 K[J]. Metrologia, 2006, 43(1): 142-162.DOI: 10.1088/0026-1394/43/1/020. [8] Greywall D S. 3He melting-curve thermometry at millikelvin temperatures [J]. Physical Review B, Condensed Matter 1985, 31(5): 2675-2683.DOI: 10.1103/physrevb.31.2675. [9] Lusher C P, Li J Y, Maidanov V A, et al. Current sensing noise thermometry using a low Tc DC SQUID preamplifier [J]. Measurement Science and Technology, 2001, 12(1): 1-15.DOI: 10.1088/0957-0233/12/1/301. [10] Merlone A, Moro F, Zandt T, et al. Construction and start-up of a large-volume thermostat for dielectric-constant gas thermometry [J]. International Journal of Thermophysics, 2010, 31(7): 1386-1395.DOI: 10.1007/s10765-010-0708-x. [11] DiPirro M J, Tuttle J G, Shirron P J. Development of a high-resolution penetration depth thermometer [M]//Advances in Cryogenic Engineering. Boston, MA: Springer. 1996: 1723-1730. 10.1007/978-1-4613-0373-2_216. [12] McDonald D G. Novel superconducting thermometer for bolometric applications [J]. Applied Physics Letters, 1987, 50(12): 775-777.DOI: 10.1063/1.98042. [13] Sauvageau J E, McDonald D G. Superconducting kinetic inductance bolometer [J]. IEEE Transactions on Magnetics, 1989, 25(2): 1331-1334.DOI: 10.1109/20.92541. [14] Shirron P J, DiPirro M J. Concept for a high-resolution thermometer utilizing the temperature dependence of the magnetic penetration depth [J]. IEEE Transactions on Applied Superconductivity, 1993, 3(1): 2140-2143.DOI: 10.1109/77.233925. [15] Meissner W. Messungen mit hilfe von flüssigem helium. Ⅵ[J]. Zeitschrift Für Physik, 1930, 60(3): 181-183.DOI: 10.1007/BF01339823. [16] Chan H A. Null test of the gravitational inverse square law with a superconducting gravity gradiometer [D]. College Park, MD, USA: University of Maryland, College Park, 1982. [17] Wasserbäch W. Electron-phonon scattering and low-temperature thermal conductivity of niobium and tantalum single crystals [J]. Physica Status Solidi (b) Research, 1985, 127(2): 481-492.DOI: 10.1002/pssb.2221270207. [18] Bodryakov V Y, Bashkatov A N. Heat capacity of tantalum in the normal and superconducting states: identification of the contributions [J]. Russian Metallurgy, 2013, (9): 671-675.DOI: 10.1134/s0036029513090048. [19] Touloukian Y S. Thermal expansion: metallic elements and alloys [M]. New York: IFI/Plenum, 1975. [20] 王迪昌,廉曾妍,王沛,等.界面平均温度和压力对DD5和1Cr11Ni2W2MoV材料接触热阻影响的实验研究 [J].中国科学院大学学报,2023,40(6):726-734. DOI:10.7523/j.ucas.2022.044. [21] Zhang H H, Han S Y, Fan L F. Modeling 2D transient heat conduction problems by the numerical manifold method on Wachspress polygonal elements [J]. Applied Mathematical Modelling, 2017, 48: 607-620.DOI: 10.1016/j.apm.2017.03.043. |