[1] Robertson H P.The uncertainty principle[J]. Phys Rev,1929, 34(1): 163-164. DOI: 10.1103/physrev.34.163. [2] Schrödinger E.Sitzungsberichte der Preussischen Akademie der Wissenschaften[J]. Physikalisch-mathematische Klasse, 1930, 14(296). [3] Maccone L, Pati A K.Stronger uncertainty relations for all incompatible observables[J]. Phys Rev Lett, 2014,113(26):260401.DOI:10.1103/PhysRevLett.113.260401 [4] Bong K W, Tischler N, Patel R B, et al.Strong unitary and overlap uncertainty relations: theory and experiment[J]. Phys Rev Lett, 2018, 120(23): 230402. DOI: 10.1103/physrevlett.120.230402. [5] Mondal D, Bagchi S, Pati A K.Tighter uncertainty and reverse uncertainty relations[J]. Phys Rev A, 2017,95(5):052117.DOI:10.1103/physreva.95.052117. [6] Zozor S, Bosyk G M, Portesi M.On a generalized entropic uncertainty relation in the case of the qubit[J] J. Phys A Math Theor, 2013, 46(46): 465301. DOI: 10.1088/1751-8113/46/46/465301. [7] Berta M, Christandl M, Colbeck R, et al.The uncertainty principle in the presence of quantum memory[J]. Nat Phys, 2010, 6(9): 659-662. DOI: 10.1038/nphys1734. [8] Baek K, Nha H, Son W.Entropic uncertainty relations via direct-sum majorization relation for generalized measurements[J]. Entropy, 2019, 21(3): 270. DOI: 10.3390/e21030270. [9] Li J L, Qiao C F.The optimal uncertainty relation[J]. Ann Phys (Berlin), 2019, 531(10): 1900143. DOI:10.1002/andp.201900143. [10] Fan B W, Wang K K, Xiao L, et al.Experimental test of a stronger multiobservable uncertainty relation[J]. Phys Rev A, 2018, 98(3): 032118. DOI: 10.1103/physreva.98.032118. [11] Xing J, Zhang Y R, Liu S, et al.Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond[J]. Sci Rep,2017,7:2563. DOI: 10.1038/s41598-017-02424-6. [12] Ma W C, Chen B, Liu Y, et al.Experimental demonstration of uncertainty relations for the triple components of angular momentum[J]. Phys Rev Lett, 2017,118(18):180402.DOI:10.1103/physrevlett.118.180402. [13] Wang H, Li J L, Wang S, et al.Experimental investigation of the uncertainty relations with coherent light[J]. Quant Inf Process, 2019, 19: 38. DOI: 10.1007/s11128-019-2530-0. [14] Kim M S, Jeong H, Zavatta A, et al.Scheme for proving the bosonic commutation relation using single-photon interference[J]. Phys Rev Lett, 2008, 101(26):260401.DOI:10.1103/physrevlett.101.260401. [15] Zavatta A, Parigi V, Kim M S, et al.Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields[J]. Phys Rev Lett, 2009, 103(14): 140406. DOI: 10.1103/physrevlett.103.140406. [16] Kim Y S, Lim H T, Ra Y S, et al.Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference[J]. Phys Lett A, 2010, 374(43): 4393-4396. DOI: 10.1016/j.physleta.2010.09.003. [17] Yao X C, Fiuráěek J, Lu H, et al.Experimental realization of programmable quantum gate array for directly probing commutation relations of Pauli operators[J]. Phys Rev Lett, 2010, 105(12): 120402. DOI: 10.1103/physrevlett.105.120402. [18] Piacentini F, Avella A, Levi M P, et al.Measuring incompatible observables by exploiting sequential weak values[J]. Phys Rev Lett, 2016, 117(17): 170402. DOI: 10.1103/physrevlett.117.170402. [19] Aharonov Y, Albert D Z, Vaidman L.How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100[J]. Phys Rev Lett,1988, 60(14): 1351-1354. DOI: 10.1103/physrevlett.60.1351. [20] Wagner R, Kersten W, Danner A, et al.Direct experimental test of commutation relation via imaginary weak value[J]. Phys Rev Research, 2021, 3(2):023243. DOI: 10.1103/physrevresearch.3.023243. [21] Chen J S, Hu M J, Hu X M, et al.Experimental realization of sequential weak measurements of non-commuting Pauli observables[J]. Opt Express, 2019, 27(5): 6089-6097. DOI: 10.1364/OE.27.006089 |