欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2011, Vol. 28 ›› Issue (4): 419-423.DOI: 10.7523/j.issn.2095-6134.2011.4.001

• 论文 •    下一篇

K2(F2[C4×C4])的计算

陈虹1, 高玉彬2, 唐国平1   

  1. 1. 中国科学院研究生院数学科学学院, 北京 100049;
    2. 陕西师范大学数学与信息科学学院, 西安 710062
  • 收稿日期:2010-09-06 修回日期:2010-09-26 发布日期:2011-07-15
  • 基金资助:

    Supported by National Natural Science Foundation of China(11071247)

Calculation of K2(F2[C4×C4])

CHEN Hong1, GAO Yu-Bin2, TANG Guo-Ping1   

  1. 1. School of Mathematical Sciences, Graduate University, Chinese Academy of Sciences, Beijing 100049, China;
    2. College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062,China
  • Received:2010-09-06 Revised:2010-09-26 Published:2011-07-15
  • Supported by:

    Supported by National Natural Science Foundation of China(11071247)

摘要:

K2(F2[C4×C4])的计算归结为计算截断多项式环F2C4[t]/(t4)的相对K2-群K2(F2C4[t]/(t4),(t)). 运用Dennis-Stein符号及它们之间的关系进行细致的分析计算,给出了K2(F2[C4×C4])的一个极小生成元集并最终确定了K2(F2[C4×C4])=C34C92.

关键词: K2-群, Dennis-Stein符号, 群环

Abstract:

First, we reduce the calculation of K2(F2[C4×C4]) to that of the relative K2-group K2(F2C4[t]/(t4),(t)) of the truncated polynomial ring F2C4[t]/(t4). Then we give a minimal generating set of K2(F2[C4×C4]) by subtle calculations of Dennis-Stein symbols. Finally we show that K2(F2[C4×C4])=C34C92.

Key words: K2-group, Dennis-Stein symbols, group ring

中图分类号: